ﻻ يوجد ملخص باللغة العربية
We consider 2+1 dimensional conformal gauge theories coupled to additional degrees of freedom which induce a spatially local but long-range in time $1/(tau-tau)^2$ interaction between gauge-neutral local operators. Such theories have been argued to describe the hole-doped cuprates near optimal doping. We focus on a SU(2) gauge theory with $N_h$ flavors of adjoint Higgs fields undergoing a quantum transition between Higgs and confining phases: the $1/(tau-tau)^2$ interaction arises from a spectator large Fermi surface of electrons. The large $N_h$ expansion leads to an effective action containing fields which are bilocal in time but local in space. We find a strongly-coupled fixed point at order $1/N_h$, with dynamic critical exponent $z > 1$. We show that the entropy preserves hyperscaling, but nevertheless leads to a linear in temperature specific heat with a co-efficient which has a finite enhancement near the quantum critical point.
There is a number of contradictory findings with regard to whether the theory describing easy-plane quantum antiferromagnets undergoes a second-order phase transition. The traditional Landau-Ginzburg-Wilson approach suggests a first-order phase trans
In fermionic systems with different types of quasi-particles, attractive interactions can give rise to exotic superconducting states, as pair density wave (PDW) superconductivity and breached pairing. In the last years the search for these new types
Understanding electrical transport in strange metals, including the seeming universality of Planckian $T$-linear resistivity, remains a longstanding challenge in condensed matter physics. We propose that local imaging techniques, such as nitrogen vac
We develop a nonequilibrium increment method to compute the Renyi entanglement entropy and investigate its scaling behavior at the deconfined critical (DQC) point via large-scale quantum Monte Carlo simulations. To benchmark the method, we first show
We study scaling behavior of the disorder parameter, defined as the expectation value of a symmetry transformation applied to a finite region, at the deconfined quantum critical point in (2+1)$d$ in the $J$-$Q_3$ model via large-scale quantum Monte C