ASKAP reveals giant radio halos in two merging SPT galaxy clusters -- Making the case for a direction-dependent pipeline --


الملخص بالإنكليزية

Early science observations from the Australian Square Kilometre Array Pathfinder (ASKAP) have revealed clear signals of diffuse radio emission associated with two clusters detected by the South Pole Telescope via their Sunyaev Zeldovich signal. SPT CLJ0553-3342 (MACSJ0553.4-3342) and SPT CLJ0638-5358 (Abell S0592) are both high-mass lensing clusters that have undergone major mergers. To improve the data products of these ASKAP early science observations and create science-fidelity images of the galaxy clusters, we performed direction-dependent (DD) calibration and imaging using state-of-the-art software {sc killMS} and {sc DDFacet}. We find that artefacts in the ASKAP images are greatly reduced after directional calibration. Here we present our DD calibrated ASKAP radio images of both clusters showing unambiguous giant radio halos with largest linear scales of $sim1$~Mpc. The halo in MACSJ0553.4-3342 was previously detected with GMRT observations at 323 MHz, but appears more extended in our ASKAP image. Although there is a shock detected in the thermal X-ray emission of this cluster, we find that the particle number density in the shocked region is too low to allow for the generation of a radio shock. The radio halo in Abell S0592 is a new discovery, and the Southwest border of the halo coincides with a shock detected in X-rays. We discuss the origins of these halos considering both the hadronic and turbulent re-acceleration models as well as sources of textit{seed} electrons. This work gives a positive indication of the potential of ASKAPs Evolutionary Map of the Universe (EMU) survey in detecting intracluster medium radio sources, and showcases the improvement in data products after utilising third-generation calibration techniques.

تحميل البحث