ﻻ يوجد ملخص باللغة العربية
Coherent radio emission in pulsars is excited due to instabilities in a relativistically streaming non-stationary plasma flow, which is generated from sparking discharges in the inner acceleration region (IAR) near the stellar surface. A number of detailed works have shown the IAR to be a partially screened gap (PSG) dominated by non-dipolar magnetic fields with continuous outflow of ions from the surface. The phenomenon of subpulse drifting is expected to originate due to variable $mathbf{E}timesmathbf{B}$ drift of the sparks in PSG, where the sparks lag behind corotation velocity of the pulsar. Detailed observations show a wide variety of subpulse drifting behaviour where subpulses in different components of the profile have different phase trajectories. But the drifting periodicity is seen to be constant, within measurement errors, across all components of the profile. Using the concept of sparks lagging behind corotation speed in PSG as well as the different orientations of the surface non-dipolar magnetic fields we have simulated the expected single pulse behaviour in a representative sample of pulsars. Our results show that the different types of drifting phase behaviour can be reproduced using these simple assumptions of spark dynamics in a non-dipolar IAR.
In this study we propose a classification scheme for the phenomenon of subpulse drifting in pulsars. We have assembled an exhaustive list of pulsars which exhibit subpulse drifting from previously published results as well as recent observations usin
We develop a model for subpulse separation period, $P_2$, taking into account both the apparent motion of the visible point as a function of pulsar phase, $psi$, and the possibility of abrupt jumps between different rotation states in non-corotating
We report a detailed study of subpulse drifting in four long period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase modulated subpulse drifting was reported in each case.
We report a detailed observational study of the single pulses from the pulsar J1822$-$2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two
We have carried out a detailed study of single pulse emission from the pulsar B2000+40 (J2002+4050), observed at 1.6 GHz frequencies using the Effelsberg radio telescope. The pulsar has three components which are not well separated, with the central