ﻻ يوجد ملخص باللغة العربية
Many imaging technologies rely on tomographic reconstruction, which requires solving a multidimensional inverse problem given a finite number of projections. Backprojection is a popular class of algorithm for tomographic reconstruction, however it typically results in poor image reconstructions when the projection angles are sparse and/or if the sensors characteristics are not uniform. Several deep learning based algorithms have been developed to solve this inverse problem and reconstruct the image using a limited number of projections. However these algorithms typically require examples of the ground-truth (i.e. examples of reconstructed images) to yield good performance. In this paper, we introduce an unsupervised sparse-view backprojection algorithm, which does not require ground-truth. The algorithm consists of two modules in a generator-projector framework; a convolutional neural network and a spatial transformer network. We evaluated our algorithm using computed tomography (CT) images of the human chest. We show that our algorithm significantly out-performs filtered backprojection when the projection angles are very sparse, as well as when the sensor characteristics vary for different angles. Our approach has practical applications for medical imaging and other imaging modalities (e.g. radar) where sparse and/or non-uniform projections may be acquired due to time or sampling constraints.
Filtered backprojection (FBP) is an efficient and popular class of tomographic image reconstruction methods. In photoacoustic tomography, these algorithms are based on theoretically exact analytic inversion formulas which results in accurate reconstr
State-of-the-art methods for Convolutional Sparse Coding usually employ Fourier-domain solvers in order to speed up the convolution operators. However, this approach is not without shortcomings. For example, Fourier-domain representations implicitly
Deep neural networks are a very powerful tool for many computer vision tasks, including image restoration, exhibiting state-of-the-art results. However, the performance of deep learning methods tends to drop once the observation model used in trainin
Deep learning-based image reconstruction methods have achieved promising results across multiple MRI applications. However, most approaches require large-scale fully-sampled ground truth data for supervised training. Acquiring fully-sampled data is o
In this paper, we establish a theoretical connection between the classical Lucas & Kanade (LK) algorithm and the emerging topic of Spatial Transformer Networks (STNs). STNs are of interest to the vision and learning communities due to their natural a