ﻻ يوجد ملخص باللغة العربية
In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~cite{Tolman1939,Kuchowicz1968} as $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ which are free from singularity, satisfy stability criteria and also well behaved. We calculate the value of constants $a$, $b$, $B$ and $C$ using matching conditions and the observed values of the masses and radii of known samples. To describe the strange quark matter (SQM) distribution, here we have used the phenomenological MIT bag model equation of state (EOS) where the density profile ($rho$) is related to the radial pressure ($p_r$) as $p_r(r)=frac{1}{3}(rho-4B_g)$. Here quark pressure is responsible for generation of bag constant $B_g$. Motivation behind this study lies in finding out a non-singular physically acceptable solution having various properties of strange stars. The model shows consistency with various energy conditions, TOV equation, Herreras cracking condition and also with Harrison-Zel$$dovich-Novikovs static stability criteria. Numerical values of EOS parameter and the adiabatic index also enhance the acceptability of our model.
We attempt to study a singularity-free model for the spherically symmetric anisotropic strange stars under Einsteins general theory of relativity by exploiting the Tolman-Kuchowicz metric. Further, we have assumed that the cosmological constant $Lamb
In this article we propose a relativistic model of a static spherically symmetric anisotropic strange star with the help of Tolman-Kuchowicz (TK) metric potentials [Tolman, Phys. Rev. {bf55}, 364 (1939) and Kuchowicz, Acta Phys. Pol. {bf33}, 541 (196
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $
In this paper we present a strange stellar model using Tolman $V$ type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and mad