Computing-in-memory (CIM) is proposed to alleviate the processor-memory data transfer bottleneck in traditional Von-Neumann architectures, and spintronics-based magnetic memory has demonstrated many facilitation in implementing CIM paradigm. Since hardware security has become one of the major concerns in circuit designs, this paper, for the first time, investigates spin-based computing-in-memory (SpinCIM) from a security perspective. We focus on two fundamental questions: 1) how the new SpinCIM computing paradigm can be exploited to enhance hardware security? 2) what security concerns has this new SpinCIM computing paradigm incurred?