ﻻ يوجد ملخص باللغة العربية
Safe-interval path planning (SIPP) is a powerful algorithm for finding a path in the presence of dynamic obstacles. SIPP returns provably optimal solutions. However, in many practical applications of SIPP such as path planning for robots, one would like to trade-off optimality for shorter planning time. In this paper we explore different ways to build a bounded-suboptimal SIPP and discuss their pros and cons. We compare the different bounded-suboptima
This paper addresses a generalization of the well known multi-agent path finding (MAPF) problem that optimizes multiple conflicting objectives simultaneously such as travel time and path risk. This generalization, referred to as multi-objective MAPF
Path planning, the problem of efficiently discovering high-reward trajectories, often requires optimizing a high-dimensional and multimodal reward function. Popular approaches like CEM and CMA-ES greedily focus on promising regions of the search spac
Where information grows abundant, attention becomes a scarce resource. As a result, agents must plan wisely how to allocate their attention in order to achieve epistemic efficiency. Here, we present a framework for multi-agent epistemic planning with
The problem of mixed static and dynamic obstacle avoidance is essential for path planning in highly dynamic environment. However, the paths formed by grid edges can be longer than the true shortest paths in the terrain since their headings are artifi
Learning-based methods are increasingly popular for search algorithms in single-criterion optimization problems. In contrast, for multiple-criteria optimization there are significantly fewer approaches despite the existence of numerous applications.