ترغب بنشر مسار تعليمي؟ اضغط هنا

BBN constraints on dark radiation isocurvature

71   0   0.0 ( 0 )
 نشر من قبل Pranjal Ralegankar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of dark radiation that is completely decoupled from the standard model in the early Universe leaves open the possibility of an associated dark radiation isocurvature mode. We show that the presence of dark radiation isocurvature leads to spatial variation in the primordial abundances of helium and deuterium due to spatial variation in $N_{rm eff}$ during Big Bang nucleosynthesis. We use the result to constrain the existence of such an isocurvature mode on scales down to $sim 1$ Mpc scales. By measuring the excess variance in the primordial helium to hydrogen and deuterium to hydrogen ratio in different galaxies, we constrain the variance in average isocurvature in a galaxy to be less than $0.13/Delta bar{N}_{rm eff}$ at 95% confidence. Here $Delta bar{N}_{rm eff}$ is the spatially averaged increase in $N_{rm eff}$ due to the additional dark radiation component.



قيم البحث

اقرأ أيضاً

We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mi xtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.
Dark radiation (DR) appears as a new physics candidate in various scenarios beyond the Standard Model. While it is often assumed that perturbations in DR are adiabatic, they can easily have an isocurvature component if more than one field was present during inflation, and whose decay products did not all thermalize with each other. By implementing the appropriate isocurvature initial conditions (IC), we derive the constraints on both uncorrelated and correlated DR density isocurvature perturbations from the full Planck 2018 data alone, and also in combination with other cosmological data sets. Our study on free-streaming DR (FDR) updates and generalizes the existing bound on neutrino density isocurvature perturbations by including a varying number of relativistic degrees of freedom, and for coupled DR (CDR) isocurvature, we derive the first bound. We also show that for CDR qualitatively new physical effects arise compared to FDR. One such effect is that for isocurvature IC, FDR gives rise to larger CMB anisotropies compared to CDR -- contrary to the adiabatic case. More generally, we find that a blue-tilt of DR isocurvature spectrum is preferred. This gives rise to a larger value of the Hubble constant $H_0$ compared to the standard $Lambda$CDM+$Delta N_{rm eff}$ cosmology with adiabatic spectra and relaxes the $H_0$ tension.
Dark sectors provide a compelling theoretical framework for thermally producing sub-GeV dark matter, and motivate an expansive new accelerator and direct-detection experimental program. We demonstrate the power of constraining such dark sectors using the measured effective number of neutrino species, $N_text{eff}$, from the Cosmic Microwave Background (CMB) and primordial elemental abundances from Big Bang Nucleosynthesis (BBN). As a concrete example, we consider a dark matter particle of arbitrary spin that interacts with the Standard Model via a massive dark photon, accounting for an arbitrary number of light degrees of freedom in the dark sector. We exclude dark matter masses below $sim$ 4 MeV at 95% confidence for all dark matter spins and dark photon masses. These bounds hold regardless of additional new light, inert degrees of freedom in the dark sector, and for dark matter-electron scattering cross sections many orders of magnitude below current experimental constraints. The strength of these constraints will only continue to improve with future CMB experiments.
Neutrinos are one of the major puzzles in modern physics. Despite measurements of mass differences, the Standard Model of particle physics describes them as exactly massless. Additionally, recent measurements from both particle physics experiments an d cosmology indicate the existence of more than the three Standard Model species. Here we review the cosmological evidence and its possible interpretations.
The recent Cosmic Microwave Background data from the Planck satellite experiment, when combined with HST determinations of the Hubble constant, are compatible with a larger, non-standard, number of relativistic degrees of freedom at recombination, pa rametrized by the neutrino effective number $N_{eff}$. In the curvaton scenario, a larger value for $N_{eff}$ could arise from a non-zero neutrino chemical potential connected to residual neutrino isocurvature density (NID) perturbations after the decay of the curvaton field, parametrized by the amplitude $alpha^{NID}$. Here we present new constraints on $N_{eff}$ and $alpha^{NID}$ from an analysis of recent cosmological data. We found that the Planck+WP dataset does not show any indication for a neutrino isocurvature component, severly constraining its amplitude, and that current indications for a non-standard $N_{eff}$ are further relaxed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا