ﻻ يوجد ملخص باللغة العربية
We investigate the environmental dependence of the stellar populations of galaxies in SDSS DR7. Echoing earlier works, we find that satellites are both more metal-rich (<0.1 dex) and older (<2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley and passive galaxies, we find that the true environmental dependence of both stellar metallicity (<0.03 dex) and age (<0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (< 0.05 dex and < 0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (`strangulation) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass--stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (~0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.
We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Obse
We investigate the stellar populations of passive spiral galaxies as a function of mass and environment, using integral field spectroscopy data from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey. Our sample consists of $52$ cl
Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and $M_r$ $leq$ $-18.
We measure the stellar populations as a function of radius for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude M_K <
We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performin