ﻻ يوجد ملخص باللغة العربية
In gravity theories that exhibit spontaneous scalarization, astrophysical objects are identical to their general relativistic counterpart until they reach a certain threshold in compactness or curvature. Beyond this threshold, they acquire a non-trivial scalar configuration, which also affects their structure. The onset of scalarization is controlled only by terms that contribute to linear perturbation around solutions of general relativity. The complete set of these terms has been identified for generalized scalar-tensor theories. Stepping on this result, we study the onset on scalarization in generalized scalar-tensor theories and determine the relevant thresholds in terms of the contributing coupling constants and the properties of the compact object.
Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyon
In a subclass of scalar-tensor theories, it has been shown that standard general relativity solutions of neutron stars and black holes with trivial scalar field profiles are unstable. Such an instability leads to solutions which are different from th
We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vecto
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first a
We discuss the Damour--Esposito-Far`ese model of gravity, which predicts the spontaneous scalarization of neutron stars in a certain range of parameter space. In the cosmological setup, the scalar field responsible for scalarization is subject to a t