ترغب بنشر مسار تعليمي؟ اضغط هنا

The multi-phase environment in the centre of Centaurus A

63   0   0.0 ( 0 )
 نشر من قبل Abhijeet Borkar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the multi-phase medium in the vicinity of the active galactic nucleus Centaurus A (Cen A). Combined high-resolution observations with the ALMA and Chandra observatories indicate that the hot X-ray emitting plasma coexists with the warm and cold media in Cen A. This complex environment is a source of CO lines with great impact for its diagnostics. We present the images from the two above-mentioned instruments covering the nuclear region (diameter of 10 i.e., ~180 pc), and we study the conditions for plasma thermal equilibrium and possible coexistence of cool clouds embedded within the hot X-ray emitting gas. Further, we demonstrate that the multi-phase medium originates naturally by the thermal instability (TI) arising due to the interaction of the high-energy radiation field from the nucleus with the ambient gas and dust. We demonstrate that cold gas clouds can coexist in the mutual contact with hot plasma, but even colder dusty molecular clouds have to be distanced by several hundred pc from the hot region. Finally, we propose a 3-D model of the appearance of the hot plasma and the CO line-emitting regions consistent with the Chandra image and we derive the integrated emissivity in specific molecular lines observed by ALMA from this model. To reproduce the observed images and the CO line luminosity the dusty shell has to be ~420 pc thick and located at ~1000 pc from the centre.



قيم البحث

اقرأ أيضاً

We implement a steady, one-dimensional flow model for the X-ray jet of Centaurus A in which entrainment of stellar mass loss is the primary cause of dissipation. Using over 260 ks of new and archival Chandra/ACIS data, we have constrained the tempera ture, density and pressure distributions of gas in the central regions of the host galaxy of Centaurus A, and so the pressure throughout the length of its jet. The model is constrained by the observed profiles of pressure and jet width, and conserves matter and energy, enabling us to estimate jet velocities, and hence all the other flow properties. Invoking realistic stellar populations within the jet, we find that the increase in its momentum flux exceeds the net pressure force on the jet unless only about one half of the total stellar mass loss is entrained. For self-consistent models, the bulk speed only falls modestly, from ~0.67c to ~0.52c over the range of 0.25-5.94 kpc from the nucleus. The sonic Mach number varies between ~5.3 and 3.6 over this range.
543 - Roland M. Crocker 2011
The Galactic centre - as the closest galactic nucleus - holds both intrinsic interest and possibly represents a useful analogue to star-burst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environme ntal conditions in the GC - here taken to mean the inner 200 pc in diameter of the Milky Way - are extreme with respect to those typically encountered in the Galactic disk. The energy densities of the various GC ISM components are typically ~two orders of magnitude larger than those found locally and the star-formation rate density ~three orders of magnitude larger. Unusually within the Galaxy, the Galactic centre exhibits hard-spectrum, diffuse TeV (=10^12 eV) gamma-ray emission spatially coincident with the regions molecular gas. Recently the nuclei of local star-burst galaxies NGC 253 and M82 have also been detected in gamma-rays of such energies. We have embarked on an extended campaign of modelling the broadband (radio continuum to TeV gamma-ray), non- thermal signals received from the inner 200 pc of the Galaxy. On the basis of this modelling we find that star-formation and associated supernova activity is the ultimate driver of the regions non-thermal activity. This activity drives a large-scale wind of hot plasma and cosmic rays out of the GC. The wind advects the locally-accelerated cosmic rays quickly, before they can lose much energy in situ or penetrate into the densest molecular gas cores where star-formation occurs. The cosmic rays can, however, heat/ionize the lower density/warm H2 phase enveloping the cores. On very large scales (~10 kpc) the non-thermal signature of the escaping GC cosmic rays has probably been detected recently as the spectacular Fermi bubbles and corresponding WMAP haze.
In this contribution, we summarize our results concerning the observational constraints on the electric charge associated with the Galactic centre black hole - Sgr A*. According to the no-hair theorem, every astrophysical black hole, including superm assive black holes, is characterized by at most three classical, externally observable parameters - mass, spin, and the electric charge. While the mass and the spin have routinely been measured by several methods, the electric charge has usually been neglected, based on the arguments of efficient discharge in astrophysical plasmas. From a theoretical point of view, the black hole can attain charge due to the mass imbalance between protons and electrons in fully ionized plasmas, which yields about $sim 10^8,{rm C}$ for Sgr A*. The second, induction mechanism concerns rotating Kerr black holes embedded in an external magnetic field, which leads to electric field generation due to the twisting of magnetic field lines. This electric field can be associated with the induced Wald charge, for which we calculate the upper limit of $sim 10^{15},{rm C}$ for Sgr A*. Although the maximum theoretical limit of $sim 10^{15},{rm C}$ is still 12 orders of magnitude smaller than the extremal charge of Sgr A*, we analyse a few astrophysical consequences of having a black hole with a small charge in the Galactic centre. Two most prominent ones are the effect on the X-ray bremsstrahlung profile and the effect on the position of the innermost stable circular orbit.
206 - Jean A. Eilek 2014
In this paper I present dynamic models of the radio source Centaurus A, and critique possible models of in situ particle reacceleration (ISR) within the radio lobes. The radio and gamma-ray data require neither homogeneous plasma nor quasi-equipartit ion between plasma and magnetic field; inhomogeneous models containing both high-field and low-field regions are equally likely. Cen A cannot be as young as the radiative lifetimes of its relativistic electrons, which range from a few to several tens of Myr. Two classes of dynamic models -- flow driven and magnetically driven -- are consistent with current observations; each requires Cen A to be on the order of a Gyr old. Thus, ongoing ISR must be occurring within the radio source. Alfven-wave ISR is probably occurring throughout the source, and may be responsible for maintaining the gamma-ray-loud electrons. It is likely to be supplemented by shock or reconnection ISR which maintains the radio-loud electrons in high-field regions.
Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H alpha+[NII] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a wid th of about 60pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the AGN feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inward, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا