ترغب بنشر مسار تعليمي؟ اضغط هنا

Logistic Regression for Massive Data with Rare Events

117   0   0.0 ( 0 )
 نشر من قبل HaiYing Wang
 تاريخ النشر 2020
والبحث باللغة English
 تأليف HaiYing Wang




اسأل ChatGPT حول البحث

This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size. This indicates that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.



قيم البحث

اقرأ أيضاً

Variational Bayes (VB) is a popular scalable alternative to Markov chain Monte Carlo for Bayesian inference. We study a mean-field spike and slab VB approximation of widely used Bayesian model selection priors in sparse high-dimensional logistic regr ession. We provide non-asymptotic theoretical guarantees for the VB posterior in both $ell_2$ and prediction loss for a sparse truth, giving optimal (minimax) convergence rates. Since the VB algorithm does not depend on the unknown truth to achieve optimality, our results shed light on effective prior choices. We confirm the improved performance of our VB algorithm over common sparse VB approaches in a numerical study.
Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. However, in moderately high-dimensional problems, where the number of features $d$ is a non-negligible fraction of the sample size $n$, the logistic regression maximum likelihood estimator (MLE), and statistical procedures based the large-sample approximation of its distribution, behave poorly. Recently, Sur and Cand`es (2019) showed that these issues can be corrected by applying a new approximation of the MLEs sampling distribution in this high-dimensional regime. Unfortunately, these corrections are difficult to implement in practice, because they require an estimate of the emph{signal strength}, which is a function of the underlying parameters $beta$ of the logistic regression. To address this issue, we propose SLOE, a fast and straightforward approach to estimate the signal strength in logistic regression. The key insight of SLOE is that the Sur and Cand`es (2019) correction can be reparameterized in terms of the emph{corrupted signal strength}, which is only a function of the estimated parameters $widehat beta$. We propose an estimator for this quantity, prove that it is consistent in the relevant high-dimensional regime, and show that dimensionality correction using SLOE is accurate in finite samples. Compared to the existing ProbeFrontier heuristic, SLOE is conceptually simpler and orders of magnitude faster, making it suitable for routine use. We demonstrate the importance of routine dimensionality correction in the Heart Disease dataset from the UCI repository, and a genomics application using data from the UK Biobank. We provide an open source package for this method, available at url{https://github.com/google-research/sloe-logistic}.
When we are interested in high-dimensional system and focus on classification performance, the $ell_{1}$-penalized logistic regression is becoming important and popular. However, the Lasso estimates could be problematic when penalties of different co efficients are all the same and not related to the data. We proposed two types of weighted Lasso estimates depending on covariates by the McDiarmid inequality. Given sample size $n$ and dimension of covariates $p$, the finite sample behavior of our proposed methods with a diverging number of predictors is illustrated by non-asymptotic oracle inequalities such as $ell_{1}$-estimation error and squared prediction error of the unknown parameters. We compare the performance of our methods with former weighted estimates on simulated data, then apply these methods to do real data analysis.
We propose a variational Bayesian (VB) procedure for high-dimensional linear model inferences with heavy tail shrinkage priors, such as student-t prior. Theoretically, we establish the consistency of the proposed VB method and prove that under the pr oper choice of prior specifications, the contraction rate of the VB posterior is nearly optimal. It justifies the validity of VB inference as an alternative of Markov Chain Monte Carlo (MCMC) sampling. Meanwhile, comparing to conventional MCMC methods, the VB procedure achieves much higher computational efficiency, which greatly alleviates the computing burden for modern machine learning applications such as massive data analysis. Through numerical studies, we demonstrate that the proposed VB method leads to shorter computing time, higher estimation accuracy, and lower variable selection error than competitive sparse Bayesian methods.
In biomedical research, many different types of patient data can be collected, such as various types of omics data and medical imaging modalities. Applying multi-view learning to these different sources of information can increase the accuracy of med ical classification models compared with single-view procedures. However, collecting biomedical data can be expensive and/or burdening for patients, so that it is important to reduce the amount of required data collection. It is therefore necessary to develop multi-view learning methods which can accurately identify those views that are most important for prediction. In recent years, several biomedical studies have used an approach known as multi-view stacking (MVS), where a model is trained on each view separately and the resulting predictions are combined through stacking. In these studies, MVS has been shown to increase classification accuracy. However, the MVS framework can also be used for selecting a subset of important views. To study the view selection potential of MVS, we develop a special case called stacked penalized logistic regression (StaPLR). Compared with existing view-selection methods, StaPLR can make use of faster optimization algorithms and is easily parallelized. We show that nonnegativity constraints on the parameters of the function which combines the views play an important role in preventing unimportant views from entering the model. We investigate the performance of StaPLR through simulations, and consider two real data examples. We compare the performance of StaPLR with an existing view selection method called the group lasso and observe that, in terms of view selection, StaPLR is often more conservative and has a consistently lower false positive rate.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا