ﻻ يوجد ملخص باللغة العربية
Given the existing COVID-19 pandemic worldwide, it is critical to systematically study the interactions between hosts and coronaviruses including SARS-Cov, MERS-Cov, and SARS-CoV-2 (cause of COVID-19). We first created four host-pathogen interaction (HPI)-Outcome postulates, and generated a HPI-Outcome model as the basis for understanding host-coronavirus interactions (HCI) and their relations with the disease outcomes. We hypothesized that ontology can be used as an integrative platform to classify and analyze HCI and disease outcomes. Accordingly, we annotated and categorized different coronaviruses, hosts, and phenotypes using ontologies and identified their relations. Various COVID-19 phenotypes are hypothesized to be caused by the backend HCI mechanisms. To further identify the causal HCI-outcome relations, we collected 35 experimentally-verified HCI protein-protein interactions (PPIs), and applied literature mining to identify additional host PPIs in response to coronavirus infections. The results were formulated in a logical ontology representation for integrative HCI-outcome understanding. Using known PPIs as baits, we also developed and applied a domain-inferred prediction method to predict new PPIs and identified their pathological targets on multiple organs. Overall, our proposed ontology-based integrative framework combined with computational predictions can be used to support fundamental understanding of the intricate interactions between human patients and coronaviruses (including SARS-CoV-2) and their association with various disease outcomes.
COVID-19 outbreak has rapidly evolved into a global pandemic. The impact of COVID-19 on patient journeys in oncology represents a new risk to interpretation of trial results and its broad applicability for future clinical practice. We identify key in
CoV2019 has evolved to be much more dangerous than CoV2003. Experiments suggest that structural rearrangements dramatically enhance CoV2019 activity. We identify a new first stage of infection which precedes structural rearrangements by using biomole
This note describes a simple score to indicate the effectiveness of mitigation against infections of COVID-19 as observed by new case counts. The score includes normalization, making comparisons across jurisdictions possible. The smoothing employed p
Proteins are macromolecules which hardly act alone; they need to make interactions with some other proteins to do so. Numerous factors are there which can regulate the interactions between proteins [4]. Here in this present study we aim to understand
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of