ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Forecasting of Patient Waiting Times in an Emergency Department

66   0   0.0 ( 0 )
 نشر من قبل Siddharth Arora Dr.
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the estimation of the probability distribution of individual patient waiting times in an emergency department (ED). Our feature-rich modelling allows for dynamic updating and refinement of waiting time estimates as patient- and ED-specific information (e.g., patient condition, ED congestion levels) is revealed during the waiting process. Aspects relating to communicating forecast uncertainty to patients, and implementing this methodology in practice, are also discussed.



قيم البحث

اقرأ أيضاً

Emergency department (ED) crowding has been an increasing problem worldwide. Prior research has identified factors that contribute to ED crowding. However, the relationships between these remain incompletely understood. This studys objective was to a nalyse the effects of initiating a local protocol to alleviate crowding situations at the expense of increasing returning patients through the development of a system dynamics (SD) simulation model. The SD study is from an academic care hospital in Boston, MA. Data sources include direct observations, semi-structured interviews, archival data from October 2013, and peer-reviewed literature from the domains of emergency medicine and management science. The SD model shows interrelations between inpatient capacity restraints and return visits due to potential premature discharges. The model reflects the vulnerability of the ED system when exposed to unpredicted increases in demand. Default trigger values for the protocol are tested to determine a balance between increased patient flows and the number of returning patients. Baseline simulation runs for generic variables assessment showed high leverage potential in bed assignment- and transfer times. A thorough understanding of the complex non-linear behaviour of causes and effects of ED crowding is enabled through the use of SD. The vulnerability of the system lies in the crucial interaction between the physical constraints and the expedited patient flows through protocol activation. This study is an example of how hospital managers can benefit from virtual scenario testing within a safe simulation environment to immediately visualise the impacts of policy adjustments.
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.
123 - Robert Newton 2021
In 2020, California required San Francisco to consider equity in access to resources such as housing, transportation, and emergency services as it re-opened its economy post-pandemic. Using a public dataset maintained by the San Francisco Fire Depart ment of every call received related to emergency response from January 2003 to April 2021, we calculated the response times and distances to the closest of 48 fire stations and 14 local emergency rooms. We used logistic regression to determine the probability of meeting the averages of response time, distance from a fire station, and distance to an emergency room based on the median income bracket of a ZIP code based on IRS statement of income data. ZIP codes in the lowest bracket ($25,000-$50,000 annually) consistently had the lowest probability of meeting average response metrics. This was most notable for distances to emergency rooms, where calls from ZIP codes in the lowest income bracket had an 11.5% chance of being within the citys average distance (1 mile) of an emergency room, while the next lowest probability (for the income bracket of $100,000-$200,000 annually) was 75.9%. As San Francisco considers equity as a part of Californias Blueprint for a Safer Economy, it should evaluate the distribution of access to emergency services. Keywords: fire department, emergency medical services, emergency rooms, equity, logistic regression
Trauma mortality results from a multitude of non-linear dependent risk factors including patient demographics, injury characteristics, medical care provided, and characteristics of medical facilities; yet traditional approach attempted to capture the se relationships using rigid regression models. We hypothesized that a transfer learning based machine learning algorithm could deeply understand a trauma patients condition and accurately identify individuals at high risk for mortality without relying on restrictive regression model criteria. Anonymous patient visit data were obtained from years 2007-2014 of the National Trauma Data Bank. Patients with incomplete vitals, unknown outcome, or missing demographics data were excluded. All patient visits occurred in U.S. hospitals, and of the 2,007,485 encounters that were retrospectively examined, 8,198 resulted in mortality (0.4%). The machine intelligence model was evaluated on its sensitivity, specificity, positive and negative predictive value, and Matthews Correlation Coefficient. Our model achieved similar performance in age-specific comparison models and generalized well when applied to all ages simultaneously. While testing for confounding factors, we discovered that excluding fall-related injuries boosted performance for adult trauma patients; however, it reduced performance for children. The machine intelligence model described here demonstrates similar performance to contemporary machine intelligence models without requiring restrictive regression model criteria or extensive medical expertise.
We investigate the efficacy of surgical versus non-surgical management for two gastrointestinal conditions, colitis and diverticulitis, using observational data. We deploy an instrumental variable design with surgeons tendencies to operate as an inst rument. Assuming instrument validity, we find that non-surgical alternatives can reduce both hospital length of stay and the risk of complications, with estimated effects larger for septic patients than for non-septic patients. The validity of our instrument is plausible but not ironclad, necessitating a sensitivity analysis. Existing sensitivity analyses for IV designs assume effect homogeneity, unlikely to hold here because of patient-specific physiology. We develop a new sensitivity analysis that accommodates arbitrary effect heterogeneity and exploits components explainable by observed features. We find that the results for non-septic patients prove more robust to hidden bias despite having smaller estimated effects. For non-septic patients, two individuals with identical observed characteristics would have to differ in their odds of assignment to a high tendency to operate surgeon by a factor of 2.34 to overturn our finding of a benefit for non-surgical management in reducing length of stay. For septic patients, this value is only 1.64. Simulations illustrate that this phenomenon may be explained by differences in within-group heterogeneity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا