ﻻ يوجد ملخص باللغة العربية
The two-user Gaussian interference channel (G-IC) is revisited, with a particular focus on practically amenable discrete input signalling and treating interference as noise (TIN) receivers. The corresponding deterministic interference channel (D-IC) is first investigated and coding schemes that can achieve the entire capacity region of D-IC under TIN are proposed. These schemes are then systematically translate into multi-layer superposition coding schemes based on purely discrete inputs for the real-valued G-IC. Our analysis shows that the proposed scheme is able to achieve the entire capacity region to within a constant gap for all channel parameters. To the best of our knowledge, this is the first constant-gap result under purely discrete signalling and TIN for the entire capacity region and all the interference regimes. Furthermore, the approach is extended to obtain coding scheme based on discrete inputs for the complex-valued G-IC. For such a scenario, the minimum distance and the achievable rate of the proposed scheme under TIN are analyzed, which takes into account the effects of random phase rotations introduced by the channels. Simulation results show that our scheme is capable of approaching the capacity region of the complex-valued G-IC and significantly outperforms Gaussian signalling with TIN in various interference regimes.
It is shown that a receiver equipped with two antennas may null an arbitrary large number of spatial directions to any desired accuracy, while maintaining the interference-free signal-to-noise ratio, by judiciously adjusting the distance between the
We consider a secure communication scenario through the two-user Gaussian interference channel: each transmitter (user) has a confidential message to send reliably to its intended receiver while keeping it secret from the other receiver. Prior work i
This paper studies a bursty interference channel, where the presence/absence of interference is modeled by a block-i.i.d. Bernoulli process that stays constant for a duration of $T$ symbols (referred to as coherence block) and then changes independen
This paper studies a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary signal distribution, and forward error control (FEC) coding. We develop a universal Gram-Schmidt orthogonalization for orthogona
We study the Han-Kobayashi (HK) achievable sum rate for the two-user symmetric Gaussian interference channel. We find the optimal power split ratio between the common and private messages (assuming no time-sharing), and derive a closed form expressio