ﻻ يوجد ملخص باللغة العربية
We present a fundamental classification of forces relevant in nonequilibrium structure formation under collective flow in Brownian many-body systems. The internal one-body force field is systematically split into contributions relevant for the spatial structure and for the coupled motion. We demonstrate that both contributions can be obtained straightforwardly in computer simulations, and present a power functional theory that describes all types of forces quantitatively. Our conclusions and methods are relevant for flow in inertial systems, such as molecular liquids and granular media.
When an external field drives a colloidal system out of equilibrium, the ensuing colloidal response can be very complex and obtaining a detailed physical understanding often requires case-by-case considerations. In order to facilitate systematic anal
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify
Driving an inertial many-body system out of equilibrium generates complex dynamics due to memory effects and the intricate relationships between the external driving force, internal forces, and transport effects. Understanding the underlying physics
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a 2D mode
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are app