ﻻ يوجد ملخص باللغة العربية
A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group. In this paper, we firstly introduce the motivation for study of the generalized Maxwell operators and bosonic Laplacians (also known as the higher spin Laplace operators). Then, with the help of connections between Rarita-Schwinger type operators and bosonic Laplacians, we solve Poissons equation for bosonic Laplacians. A representation formula for bounded solutions to Poissons equation in Euclidean space is also provided. In the end, we provide Greens formulas for bosonic Laplacians in scalar-valued and Clifford-valued cases, respectively. These formulas reveal that bosonic Laplacians are self-adjoint with respect to a given $L^2$ inner product on certain compact supported function spaces.
In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robi
We establish two results concerning the Quantum Limits (QLs) of some sub-Laplacians. First, under a commutativity assumption on the vector fields involved in the definition of the sub-Laplacian, we prove that it is possible to split any QL into sever
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2(
We consider random elliptic equations in dimension $dgeq 3$ at small ellipticity contrast. We derive the large-distance asymptotic expansion of the annealed Greens function up to order $4$ in $d=3$ and up to order $d+2$ for $dgeq 4$. We also derive a
Greens function in non-Hermitian systems has recently been revealed to be capable of directional amplification in some cases. The exact formulas for end-to-end Greens functions are significantly important for both studies of non-Hermitian systems and