ترغب بنشر مسار تعليمي؟ اضغط هنا

Moderate Deviations for the SSEP with a Slow Bond

175   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Xue
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the one dimensional symmetric simple exclusion process with a slow bond. In this model, particles cross each bond at rate $N^2$, except one particular bond, the slow bond, where the rate is $N$. Above, $N$ is the scaling parameter. This model has been considered in the context of hydrodynamic limits, fluctuations and large deviations. We investigate moderate deviations from hydrodynamics and obtain a moderate deviation principle.



قيم البحث

اقرأ أيضاً

125 - Linjie Zhao 2021
We consider the symmetric simple exclusion process with slow boundary first introduced in [Baldasso {it et al.}, Journal of Statistical Physics, 167(5), 2017]. We prove a law of large number for the empirical measure of the process under a longer tim e scaling instead of the usual diffusive time scaling.
240 - R. Douc , A. Guillin , J. Najim 2004
Consider the state space model (X_t,Y_t), where (X_t) is a Markov chain, and (Y_t) are the observations. In order to solve the so-called filtering problem, one has to compute L(X_t|Y_1,...,Y_t), the law of X_t given the observations (Y_1,...,Y_t). Th e particle filtering method gives an approximation of the law L(X_t|Y_1,...,Y_t) by an empirical measure frac{1}{n}sum_1^ndelta_{x_{i,t}}. In this paper we establish the moderate deviation principle for the empirical mean frac{1}{n}sum_1^npsi(x_{i,t}) (centered and properly rescaled) when the number of particles grows to infinity, enhancing the central limit theorem. Several extensions and examples are also studied.
159 - Shui Feng , Fuqing Gao 2008
The Poisson--Dirichlet distribution arises in many different areas. The parameter $theta$ in the distribution is the scaled mutation rate of a population in the context of population genetics. The limiting case of $theta$ approaching infinity is prac tically motivated and has led to new, interesting mathematical structures. Laws of large numbers, fluctuation theorems and large-deviation results have been established. In this paper, moderate-deviation principles are established for the Poisson--Dirichlet distribution, the GEM distribution, the homozygosity, and the Dirichlet process when the parameter $theta$ approaches infinity. These results, combined with earlier work, not only provide a relatively complete picture of the asymptotic behavior of the Poisson--Dirichlet distribution for large $theta$, but also lead to a better understanding of the large deviation problem associated with the scaled homozygosity. They also reveal some new structures that are not observed in existing large-deviation results.
We obtain sharp upper and lower bounds for the moderate deviations of the volume of the range of a random walk in dimension five and larger. Our results encompass two regimes: a Gaussian regime for small deviations, and a stretched exponential regime for larger deviations. In the latter regime, we show that conditioned on the moderate deviations event, the walk folds a small part of its range in a ball-like subset. Also, we provide new path properties, in dimension three as well. Besides the key role Newtonian capacity plays in this study, we introduce two original ideas, of general interest, which strengthen the approach developed in cite{AS}.
Let $(xi_i,mathcal{F}_i)_{igeq1}$ be a sequence of martingale differences. Set $S_n=sum_{i=1}^nxi_i $ and $[ S]_n=sum_{i=1}^n xi_i^2.$ We prove a Cramer type moderate deviation expansion for $mathbf{P}(S_n/sqrt{[ S]_n} geq x)$ as $nto+infty.$ Our res ults partly extend the earlier work of [Jing, Shao and Wang, 2003] for independent random variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا