ترغب بنشر مسار تعليمي؟ اضغط هنا

The GlueX Beamline and Detector

115   0   0.0 ( 0 )
 نشر من قبل Elton S. Smith
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The GlueX experiment at Jefferson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber array. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based on triplet photoproduction. Charged-particle tracks from interactions in the central target are analyzed in a solenoidal field using a central straw-tube drift chamber and six packages of planar chambers with cathode strips and drift wires. Electromagnetic showers are reconstructed in a cylindrical scintillating fiber calorimeter inside the magnet and a lead-glass array downstream. Charged particle identification is achieved by measuring energy loss in the wire chambers and using the flight time of particles between the target and detectors outside the magnet. The signals from all detectors are recorded with flash ADCs and/or pipeline TDCs into memories allowing trigger decisions with a latency of 3.3 $mu$s. The detector operates routinely at trigger rates of 40 kHz and data rates of 600 megabytes per second. We describe the photon beam, the GlueX detector components, electronics, data-acquisition and monitoring systems, and the performance of the experiment during the first three years of operation.



قيم البحث

اقرأ أيضاً

The GlueX experiment is located in experimental Hall D at Jefferson Lab (JLab) and provides a unique capability to search for hybrid mesons in high-energy photoproduction, utilizing a ~9 GeV linearly polarized photon beam. The initial, low-intensity phase of GlueX was recently completed and a high-intensity phase has begun in 2020 which includes an upgraded kaon identification system, known as the DIRC (Detection of Internally Reflected Cherenkov light), utilizing components from the decommissioned BaBar DIRC. The identification of kaon final states will significantly enhance the GlueX physics program, to aid in inferring the quark flavor content of conventional (and potentially hybrid) mesons. In these proceedings we describe the installation of the GlueX DIRC and the analysis of initial commissioning data
The GlueX experiment takes place in experimental Hall D at Jefferson Lab (JLab). With a linearly polarized photon beam of up to 12 GeV energy, GlueX is a dedicated experiment to search for hybrid mesons via photoproduction reactions. The low-intensit y (Phase I) of GlueX was recently completed; the high-intensity (Phase II) started in 2020 including an upgraded particle identification system, known as the DIRC (Detection of Internally Reflected Cherenkov light), utilizing components from the decommissioned BaBar experiment. The identification and separation of the kaon final states will significantly enhance the GlueX physics program, by adding the capability of accessing the strange quark flavor content of conventional (and potentially hybrid) mesons. In these proceedings, we report that the installation and commissioning of the DIRC detector has been successfully completed.
The Central Drift Chamber is a straw-tube wire chamber of cylindrical structure located surrounding the target inside the bore of the GlueX spectrometer solenoid. Its purpose is to detect and track charged particles with momenta as low as 0.25 GeV/c as well as to identify low-momentum protons via energy loss. The construction of the detector is described and its operation and calibration are discussed in detail. The design goal of 150 microns in position resolution has been reached.
87 - M. Arenz , W.-J. Baek , M. Beck 2018
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium beta decay. This w ork documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of Autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous Kr-83m was injected into the KATRIN source section, and a condensed Kr-83m source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus.
As long-baseline neutrino experiments enter the precision era, the difficulties associated with understanding neutrino interaction cross sections on atomic nuclei are expected to limit experimental sensitivities to oscillation parameters. In particul ar, the ability to relate experimental observables to neutrino energy in previous experiments has relied solely on theoretical models of neutrino-nucleus interactions, which currently suffer from very large theoretical uncertainties. By observing charged current $ u_mu$ interactions over a continuous range of off-axis angles from 1 to 4 degrees, the nuPRISM water Cherenkov detector can provide a direct measurement of the far detector lepton kinematics for any given set of oscillation parameters, which largely removes neutrino interaction modeling uncertainties from T2K oscillation measurements. This naturally provides a direct constraint on the relationship between lepton kinematics and neutrino energy. In addition, nuPRISM is a sensitive probe of sterile neutrino oscillations with multiple energy spectra, which provides unique constraints on possible background-related explanations of the MiniBooNE anomaly. Finally, high-precision measurements of neutrino cross sections on water are possible, including $ u_e$ measurements and the first ever measurements of neutral current interactions as a function of neutrino energy. The nuPRISM detector also benefits the proposed Hyper-Kamiokande project. A demonstration that neutrino interaction uncertainties can be controlled will be important to understanding the physics reach of Hyper-K. In addition, nuPRISM will provide an easily accessible prototype detector for many of the new hardware components currently under consideration for Hyper-K. The following document presents the configuration, physics impact, and preliminary cost estimates for a nuPRISM detector in the J-PARC neutrino beamline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا