ﻻ يوجد ملخص باللغة العربية
Several theoretical predictions have claimed that the neutral exciton of TMDCs splits into a transversal and longitudinal exciton branch, with the longitudinal one, which is the upper branch, exhibiting an extraordinary strong dispersion in the meV range within the light cone. Historically, this was linked for semiconductor quantum wells to strong far-field optical dipole coupling, or strong electronic long-range exchange interactions, describing two sides of the same coin. Recently, experiments utilizing Fourier-space spectroscopy have shown that the exciton (exciton-polariton) dispersion can indeed be measured for high-quality hexagonal-BN-encapsulated WSe2 monolayer samples and can confirm the energy scale. Here, the exciton fine-structures pseudo-spin and the valley polarization are investigated as a function of the centre-of-mass-momentum and excitation-laser detuning. For quasi-resonant excitation, a strong dispersion featuring a pronounced momentum-dependent helicity is observed. By increasing the excitation energy step-wise towards and then above the electronic band gap, the dispersion and the helicity systematically decrease due to contributions of incoherent excitons and emission from plasma. The decline of the helicity with centre-of-mass momentum can be phenomenologically modelled by the Maialle-Silva-Sham mechanism using the exciton splitting as the source of an effective magnetic field.
Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena. The recent emergence of layered materials provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons.
Two-dimensional excitons formed in quantum materials such as monolayer transition-metal dichalcogenides and their strong light-matter interaction have attracted unrivalled attention by the research community due to their extraordinarily large oscilla
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs
We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diff