ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Measurement of Pseudo-Spin Texture of the Exciton Fine-Structure in Monolayer WSe2 within the Light Cone

192   0   0.0 ( 0 )
 نشر من قبل Arash Rahimi-Iman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several theoretical predictions have claimed that the neutral exciton of TMDCs splits into a transversal and longitudinal exciton branch, with the longitudinal one, which is the upper branch, exhibiting an extraordinary strong dispersion in the meV range within the light cone. Historically, this was linked for semiconductor quantum wells to strong far-field optical dipole coupling, or strong electronic long-range exchange interactions, describing two sides of the same coin. Recently, experiments utilizing Fourier-space spectroscopy have shown that the exciton (exciton-polariton) dispersion can indeed be measured for high-quality hexagonal-BN-encapsulated WSe2 monolayer samples and can confirm the energy scale. Here, the exciton fine-structures pseudo-spin and the valley polarization are investigated as a function of the centre-of-mass-momentum and excitation-laser detuning. For quasi-resonant excitation, a strong dispersion featuring a pronounced momentum-dependent helicity is observed. By increasing the excitation energy step-wise towards and then above the electronic band gap, the dispersion and the helicity systematically decrease due to contributions of incoherent excitons and emission from plasma. The decline of the helicity with centre-of-mass momentum can be phenomenologically modelled by the Maialle-Silva-Sham mechanism using the exciton splitting as the source of an effective magnetic field.



قيم البحث

اقرأ أيضاً

Coupling degrees of freedom of distinct nature plays a critical role in numerous physical phenomena. The recent emergence of layered materials provides a laboratory for studying the interplay between internal quantum degrees of freedom of electrons. Here, we report experimental signatures of new coupling phenomena connecting real spin with layer pseudospins in bilayer WSe2. In polarization-resolved photoluminescence measurements, we observe large spin orientation of neutral and charged excitons generated by both circularly and linearly polarized light, with a splitting of the trion spectrum into a doublet at large vertical electrical field. These observations can be explained by locking of spin and layer pseudospin in a given valley. Because up and down spin states are localized in opposite layers, spin relaxation is substantially suppressed, while the doublet emerges as a manifestation of electrically induced spin splitting resulting from the interlayer bias. The observed distinctive behavior of the trion doublet under circularly and linearly polarized light excitation further provides spectroscopic evidence of interlayer and intralayer trion species, a promising step toward optical manipulation in van der Waals heterostructures through the control of interlayer excitons.
Two-dimensional excitons formed in quantum materials such as monolayer transition-metal dichalcogenides and their strong light-matter interaction have attracted unrivalled attention by the research community due to their extraordinarily large oscilla tor strength as well as binding energy, and the inherent spin-valley locking. Semiconducting few-layer and monolayer materials with their sharp optical resonances such as WSe2 have been extensively studied and envisioned for applications in the weak as well as strong light-matter coupling regimes, for effective nano-laser operation with various different structures, and particularly for valleytronic nanophotonics motivated by the circular dichroism. Many of these applications, which may benefit heavily from the two-dimensional electronic quasiparticles properties in such films, require controlling, manipulating and first of all understanding the nature of the optical resonances that are attributed to exciton modes. While theory and previous experiments have provided unique methods to the characterization and classification efforts regarding the band structure and optical modes in 2D materials, here, we directly measure the quasiparticle energy-momentum dispersion for the first time. Our results for single-layer WSe2 clearly indicate an emission regime predominantly governed by free excitons, i.e. Coulomb-bound electron-hole pairs with centre-of-mass momentum and corresponding effective mass. Besides uniquely evidencing the existence of free excitons at cryogenic temperatures optically, the fading of the dispersive character for increased temperatures or excitation densities reveals a transition to a regime with profound role of charge-carrier plasma or localized excitons regarding its emission, debunking the myth of free-exciton emission at elevated temperatures.
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud ospins, analogous to that routinely implemented using true spin, in the quest for quantum technologies. Here we show for the first time that SU(2) valley coherence can indeed be generated and detected. Using monolayer semiconductor WSe2 devices, we first establish the circularly polarized optical selection rules for addressing individual valley excitons and trions. We then reveal coherence between valley excitons through the observation of linearly polarized luminescence, whose orientation always coincides with that of any linearly polarized excitation. Since excitons in a single valley emit circularly polarized photons, linear polarization can only be generated through recombination of an exciton in a coherent superposition of the two valleys. In contrast, the corresponding photoluminescence from trions is not linearly polarized, consistent with the expectation that the emitted photon polarization is entangled with valley pseudospin. The ability to address coherence, in addition to valley polarization, adds a critical dimension to the quantum manipulation of valley index necessary for coherent valleytronics.
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs erved in monolayers exfoliated from bulk material. The 2s excitonic state is also observed at higher energies in the photoluminescence spectrum. Magneto-optical spectroscopy allows for the determination of the g-factors and of the spatial extent of the excitonic wave functions associated with these emissions. Our work establishes CVD grown monolayers of transition metal dichalcogenides as a mature technology for optoelectronic applications.
We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diff usivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semi-phenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically-thin van der Waals materials and their heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا