ﻻ يوجد ملخص باللغة العربية
We investigate the structure of nodal solutions for coupled nonlinear Schr{o}dinger equations in the repulsive coupling regime. Among other results, for the following coupled system of $N$ equations, we prove the existence of infinitely many nodal solutions which share the same componentwise-prescribed nodal numbers begin{equation}label{ab} left{ begin{array}{lr} -{Delta}u_{j}+lambda u_{j}=mu u^{3}_{j}+sum_{i eq j}beta u_{j}u_{i}^{2} ,,,,,,, in W , u_{j}in H_{0,r}^{1}(W), ,,,,,,,,j=1,dots,N, end{array} right. end{equation} where $W$ is a radial domain in $mathbb R^n$ for $nleq 3$, $lambda>0$, $mu>0$, and $beta <0$. More precisely, let $p$ be a prime factor of $N$ and write $N=pB$. Suppose $betaleq-frac{mu}{p-1}$. Then for any given non-negative integers $P_{1},P_{2},dots,P_{B}$, (ref{ab}) has infinitely many solutions $(u_{1},dots,u_{N})$ such that each of these solutions satisfies the same property: for $b=1,...,B$, $u_{pb-p+i}$ changes sign precisely $P_b$ times for $i=1,...,p$. The result reveals the complex nature of the solution structure in the repulsive coupling regime due to componentwise segregation of solutions. Our method is to combine a heat flow approach as deformation with a minimax construction of the symmetric mountain pass theorem using a $mathbb Z_p$ group action index. Our method is robust, also allowing to give the existence of one solution without assuming any symmetry of the coupling.
In this paper, we study the existence of nodal solutions for the non-autonomous Schr{o}dinger--Poisson system: begin{equation*} left{ begin{array}{ll} -Delta u+u+lambda K(x) phi u=f(x) |u|^{p-2}u & text{ in }mathbb{R}^{3}, -Delta phi =K(x)u^{2} & te
We consider the equation $Delta u=Vu$ in exterior domains in $mathbb{R}^2$ and $mathbb{R}^3$, where $V$ has certain periodicity properties. In particular we show that such equations cannot have non-trivial superexponentially decaying solutions. As an
In this paper, we study an inverse coefficients problem for two coupled Schr{o}dinger equations with an observation of one component of the solution. The observation is done in a nonempty open subset of the domain where the equations hold. A logarith
In this paper, we study the existence and instability of standing waves with a prescribed $L^2$-norm for the fractional Schr{o}dinger equation begin{equation} ipartial_{t}psi=(-Delta)^{s}psi-f(psi), qquad (0.1)end{equation} where $0<s<1$, $f(psi)=|ps
In this work, we employ the $bar{partial}$ steepest descent method in order to study the Cauchy problem of the cgNLS equations with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The