ترغب بنشر مسار تعليمي؟ اضغط هنا

Meromorphic $L^2$ functions on flat surfaces

74   0   0.0 ( 0 )
 نشر من قبل Ian Frankel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Ian Frankel




اسأل ChatGPT حول البحث

We prove a quantitative version of the non-uniform hyperbolicity of the Teichmuller geodesic flow. Namely, at each point of any Teichmuller flow line, we bound the infinitesimal spectral gap for variations of the Hodge norm along the flow line in terms of an easily estimated geometric quantity on the flat surface, which is greater than or equal to the flat systole. As applications, we strengthen results of Trevi~no and Smith regarding unique ergodicity of measured foliations, and give an estimate for the spectral gaps of pseudo-Anosov homeomorphisms based on the location of their axes in the moduli space of quadratic differentials.



قيم البحث

اقرأ أيضاً

140 - Max Bauer 2014
An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by p arallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel-Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel-Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.
The loop graph of an infinite type surface is an infinite diameter hyperbolic graph first studied in detail by Juliette Bavard. An important open problem in the study of infinite type surfaces is to describe the boundary of the loop graph as a space of geodesic laminations. We approach this problem by constructing the first examples of 2-filling rays on infinite type surfaces. Such rays accumulate onto geodesic laminations which are in some sense filling, but without strong enough properties to correspond to points in the boundary of the loop graph. We give multiple constructions using both a hands-on combinatorial approach and an approach using train tracks and automorphisms of flat surfaces. In addition, our approaches are sufficiently robust to describe all 2-filling rays with certain other basic properties as well as to produce uncountably many distinct mapping class group orbits.
We give a complete characterization of the relationship between the shape of a Euclidean polygon and the symbolic dynamics of its billiard flow. We prove that the only pairs of tables that can have the same bounce spectrum are right-angled tables tha t differ by an affine map. The main tool is a new theorem that establishes that a flat cone metric is completely determined by the support of its Liouville current.
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
Let $Sigma$ be a hyperbolic surface. We study the set of curves on $Sigma$ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary $gamma_0$. For example, in the particular case that $Sigma$ is a once-punctured to rus, we prove that the cardinality of the set of curves of type $gamma_0$ and of at most length $L$ is asymptotic to $L^2$ times a constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا