ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted String Theory in Anti-de Sitter Space

246   0   0.0 ( 0 )
 نشر من قبل Songyuan Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a string theory in three-dimensional anti-de Sitter space-time that is independent of the boundary metric. It is a topologically twisted theory of quantum gravity. We study string theories with an asymptotic N=2 superconformal symmetry and demonstrate that, when the world sheet coupling to the space-time boundary metric undergoes a U(1) R-symmetry twist, the space-time boundary energy-momentum tensor becomes topological. As a by-product of our analysis, we obtain the world sheet vertex operator that codes the space-time energy-momentum for conformally flat boundary metrics.



قيم البحث

اقرأ أيضاً

There have been many attempts to construct de Sitter space-times in string theory. While arguably there have been some successes, this has proven challenging, leading to the de Sitter swampland conjecture: quantum theories of gravity do not admit sta ble or metastable de Sitter space. Here we explain that, within controlled approximations, one lacks the tools to construct de Sitter space in string theory. Such approximations would require the existence of a set of (arbitrarily) small parameters, subject to severe constraints. But beyond this one also needs an understanding of big-bang and big-crunch singularities that is not currently accessible to standard approximations in string theory. The existence or non-existence of metastable de Sitter space in string theory remains a matter of conjecture.
179 - Sujay K. Ashok , Jan Troost 2021
We study finite temperature string scale $AdS_3$ backgrounds. One background is $AdS_3 times S^1 times T^2$ in which the anti-de Sitter space-time and the circle are at the radius $sqrt{alpha}$. Using path integral techniques, we show that the bulk s pectrum includes a continuum of states as well as Ramond-Ramond ground states that agree with those of the symmetric orbifold of the two-torus after second quantization. We also examine the one-loop free energy of the background $AdS_3 times S^1$ at curvature radius $sqrt{2 alpha/3}$. In the space-time NSNS sector, the string theory spontaneously breaks conformal symmetry as well as R-charge conjugation symmetry. We prove that the minimum in the boundary energy is reached for a singly wound string. In the RR sector, we classify the infinite set of ground states with fractional R-charges. Moreover, we remark on the behaviour of critical temperatures as the curvature scale becomes smaller than the string scale. In an appendix, we derive the Hawking-Page transition in string theory by integrating a world sheet one-point function.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat spac e to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.
We revisit the calculation of the thermal free energy for string theory in three-dimensional anti-de Sitter spacetime with Neveu-Schwarz-Neveu-Schwarz flux. The path integral calculation is exploited to confirm the off-shell Hilbert space and we find that the Casimir of the discrete representations of the isometry group takes values in a half-open interval. We extend the free energy calculation to the case of superstrings, calculate the boundary toroidal twisted partition function in the Ramond-Ramond sector, and prove lower bounds on the boundary conformal dimension from the bulk perspective. We classify Ramond-Ramond ground states and construct their second quantized partition function. The partition function exhibits intriguing modular properties.
We construct five dimensional black rings in global anti-de Sitter space using numerical methods. These rings satisfy the BPS bound $| J | < M ell$, but the angular velocity always violates the Hawking-Reall bound $| Omega_H ell | leq 1$, indicating that they should be unstable under superradiance. At high temperatures, the limit $| Omega_H ell | searrow 1$ is attained by thin rings with an arbitrarily large radius. However, at sufficiently low temperatures, this limit is saturated by a new kind of rings, whose outer circle can still be arbitrarily long while the hole in the middle does not grow proportionally. This gives rise to a membrane-like horizon geometry, which does not have an asymptotically flat counterpart. We find no evidence for thin AdS black rings whose transverse $S^2$ is much larger than the radius of AdS, $ell$, and thus these solutions never fall into the hydrodynamic regime of the dual CFT. Thermodynamically, we find that AdS black rings never dominate the grand canonical ensemble. The behaviour of our solutions in the microcanonical ensemble approaches known perturbative results in the thin-ring limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا