ﻻ يوجد ملخص باللغة العربية
Eukaryotic cell motility involves a complex network of interactions between biochemical components and mechanical processes. The cell employs this network to polarize and induce shape changes that give rise to membrane protrusions and retractions, ultimately leading to locomotion of the entire cell body. The combination of a nonlinear reaction-diffusion model of cell polarization, noisy bistable kinetics, and a dynamic phase field for the cell shape permits us to capture the key features of this complex system to investigate several motility scenarios, including amoeboid and fan-shaped forms as well as intermediate states with distinct displacement mechanisms. We compare the numerical simulations of our model to live cell imaging experiments of motile {it Dictyostelium discoideum} cells under different developmental conditions. The dominant parameters of the mathematical model that determine the different motility regimes are identified and discussed.
The aim of the article is to study the stability of a non-local kinetic model proposed by Loy and Preziosi (2019a). We split the population in two subgroups and perform a linear stability analysis. We show that pattern formation results from modulati
Cells crawling through tissues migrate inside a complex fibrous environment called the extracellular matrix (ECM), which provides signals regulating motility. Here we investigate one such well-known pathway, involving mutually antagonistic signalling
The conventional cancer stem cell (CSC) theory indicates a hierarchy of CSCs and non-stem cancer cells (NSCCs), that is, CSCs can differentiate into NSCCs but not vice versa. However, an alternative paradigm of CSC theory with reversible cell plastic
Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to
We present a novel mathematical model of heterogeneous cell proliferation where the total population consists of a subpopulation of slow-proliferating cells and a subpopulation of fast-proliferating cells. The model incorporates two cellular processe