ﻻ يوجد ملخص باللغة العربية
This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in any constraint. Special cases include Covering Mixed Integer Linear Programs (CMIP), and Weighted Vertex Cover (with D=2). Via duality, the paper also gives poly-logarithmic-round, distributed D-approximation algorithms for Fractional Packing linear programs (where D is the maximum number of constraints in which any variable occurs), and for Max Weighted c-Matching in hypergraphs (where D is the maximum size of any of the hyperedges; for graphs D=2). The paper also gives parallel (RNC) 2-approximation algorithms for CMIP with two variables per constraint and Weighted Vertex Cover. The algorithms are randomized. All of the approximation ratios exactly match those of comparable centralized algorithms.
We describe the first nearly linear-time approximation algorithms for explicitly given mixed packing/covering linear programs, and for (non-metric) fractional facility location. We also describe the first parallel algorithms requiring only near-linea
For over a decade now we have been witnessing the success of {em massive parallel computation} (MPC) frameworks, such as MapReduce, Hadoop, Dryad, or Spark. One of the reasons for their success is the fact that these frameworks are able to accurately
We present a near-tight analysis of the average query complexity -- `a la Nguyen and Onak [FOCS08] -- of the randomized greedy maximal matching algorithm, improving over the bound of Yoshida, Yamamoto and Ito [STOC09]. For any $n$-vertex graph of ave
Consider a planar graph $G=(V,E)$ with polynomially bounded edge weight function $w:Eto [0, poly(n)]$. The main results of this paper are NC algorithms for the following problems: - minimum weight perfect matching in $G$, - maximum cardinality an
In this paper we give fast distributed graph algorithms for detecting and listing small subgraphs, and for computing or approximating the girth. Our algorithms improve upon the state of the art by polynomial factors, and for girth, we obtain an const