ﻻ يوجد ملخص باللغة العربية
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement transitions, where the steady-state entanglement collapses from a volume-law to an area-law at a critical measurement probability $p_{c}$. Interestingly, there is a distinction in the value of $p_{c}$ depending on how well the underlying unitary dynamics scramble quantum information. For strongly chaotic systems, $p_{c} > 0$, whereas for weakly chaotic systems, such as integrable models, $p_{c} = 0$. In this work, we investigate these measurement-induced entanglement transitions in a system where the underlying unitary dynamics are many-body localized (MBL). We demonstrate that the emergent integrability in an MBL system implies a qualitative difference in the nature of the measurement-induced transition depending on the measurement basis, with $p_{c} > 0$ when the measurement basis is scrambled and $p_{c} = 0$ when it is not. This feature is not found in Haar-random circuit models, where all local operators are scrambled in time. When the transition occurs at $p_{c} > 0$, we use finite-size scaling to obtain the critical exponent $ u = 1.3(2)$, close to the value for 2+0D percolation. We also find a dynamical critical exponent of $z = 0.98(4)$ and logarithmic scaling of the R{e}nyi entropies at criticality, suggesting an underlying conformal symmetry at the critical point. This work further demonstrates how the nature of the measurement-induced entanglement transition depends on the scrambling nature of the underlying unitary dynamics. This leads to further questions on the control and simulation of entangled quantum states by measurements in open quantum systems.
We experimentally study the effects of coupling one-dimensional Many-Body Localized (MBL) systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artifically prepare an initial charge density wave in an array of 1
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. We compare two different limits of the measurement problem, the stochastic quantum-state diffusion protocol corresponding to infinite
We introduce and explore a one-dimensional hybrid quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are
Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum