ﻻ يوجد ملخص باللغة العربية
Planetary-scale waves are thought to play a role in powering the yet-unexplained atmospheric superrotation of Venus. Puzzlingly, while Kelvin, Rossby and stationary waves manifest at the upper clouds (65--70 km), no planetary-scale waves or stationary patterns have been reported in the intervening level of the lower clouds (48--55 km), although the latter are probably Lee waves. Using observations by the Akatsuki orbiter and ground-based telescopes, we show that the lower clouds follow a regular cycle punctuated between 30$^{circ}$N--40$^{circ}$S by a sharp discontinuity or disruption with potential implications to Venuss general circulation and thermal structure. This disruption exhibits a westward rotation period of $sim$4.9 days faster than winds at this level ($sim$6-day period), alters clouds properties and aerosols, and remains coherent during weeks. Past observations reveal its recurrent nature since at least 1983, and numerical simulations show that a nonlinear Kelvin wave reproduces many of its properties.
We present measurements of the wind speeds at the nightside lower clouds of Venus from observations by JAXAs mission Akatsuki during 2016, complemented with new wind measurements from ground-based observations acquired with TNG/NICS in 2012 and IRTF/
We present the detection and characterisation of mesoscale waves on the lower clouds of Venus using images from the Visible Infrared Thermal Imaging Spectrometer onboard the European Venus Express space mission and from the 2 $mu$m camera (IR2) instr
Juno Mission to Jupiter has found closely-packed cyclones at the planets two poles. The observation that these cyclones coexist in very confined space, with outer rims almost touching each other but without merging, poses a big puzzle. In this work,
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planets rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the
At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface, a phenomenon known as superrotation. Whereas on Venuss dayside the cloud top motions are well determined and Venus general circula