ﻻ يوجد ملخص باللغة العربية
Broadband dual-comb spectroscopy (DCS) based on portable mode-locked fiber frequency combs is a powerful tool for in situ, calibration free, multi-species spectroscopy. While the acquisition of a single spectrum with mode-locked DCS typically takes microseconds to milliseconds, the applications of these spectrometers have generally been limited to systems and processes with time changes on the order of seconds or minutes due to the need to average many spectra to reach a high signal-to-noise ratio (SNR). Here, we demonstrate high-speed, continuous, fiber mode-locked laser DCS with down to 11 $mu$s time resolution. We achieve this by filtering the comb spectra using portable Fabry-Perot cavities to generate filtered combs with 1 GHz tooth spacing. The 1 GHz spacing increases the DCS acquisition speed and SNR for a given optical bandwidth while retaining a sufficient spacing to resolve absorption features over a wide range of conditions. We measure spectra of methane inside a rapid compression machine throughout the 16 ms compression cycle with 133 cm$^{-1}$ bandwidth (4000 comb teeth) and 1.4 ms time resolution by spectrally filtering one of the combs. By filtering both combs, we measured a single-shot, 25 cm$^{-1}$ (750 comb teeth) spectrum of CO around 6330 cm$^{-1}$ in 11 $mu$s. The technique enables simultaneously high-speed and high-resolution DCS measurements, and can be applied anywhere within the octave-spanning spectrum of robust and portable fiber mode-locked frequency combs.
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectr
Spectroscopy in the molecular fingerprint spectral region (6.5-20 $mu$m) yields critical information on material structure for physical, chemical and biological sciences. Despite decades of interest and effort, this portion of the electromagnetic spe
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin
Due to its fast and high resolution characteristics, dual-comb spectroscopy has attracted an increasing amount of interest since its first demonstration. In the terahertz frequency range where abundant absorption lines (finger prints) of molecules ar
We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. Finally, we demonstr