ترغب بنشر مسار تعليمي؟ اضغط هنا

An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory

263   0   0.0 ( 0 )
 نشر من قبل Carlos Arg\\\"uelles Delgado
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305,735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01,eV$^2$ and 100,eV$^2$. The best-fit point is found to be at $sin^2(2theta_{24})=0.10$ and $Delta m_{41}^2 = 4.5{rm eV}^2$, which is consistent with the no sterile neutrino hypothesis with a p-value of 8.0%.



قيم البحث

اقرأ أيضاً

We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube neutrino telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric $ u_mu$ and $bar{ u}_mu$ events we construct confidence intervals in two analysis spaces: $sin^2 (2theta_{24})$ vs. $Delta m^2_{41}$ under the conservative assumption $theta_{34}=0$; and $sin^2(2theta_{24})$ vs. $sin^2 (2theta_{34})$ given sufficiently large $Delta m^2_{41}$ that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p-value of 8% in the first analysis space and 19% in the second.
We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately $10-60~$GeV. DeepCore is the low-energy sub-array of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light ($Delta m_{41}^2 sim 1 mathrm{ eV^2}$) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction, and therefore cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three neutrino hypothesis. Therefore we derive limits on the mixing matrix elements at the level of $|U_{mu4}|^2 < 0.11 $ and $|U_{tau4}|^2 < 0.15 $ (90% C.L.) for the sterile neutrino mass splitting $Delta m_{41}^2 = 1.0$ eV$^2$.
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $Delta m^2_{32}=2.72^{+0.19}_{-0.20}times 10^{-3},mathrm{eV}^2$ and $sin^2theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $sim 1,mathrm{GeV}$, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present rthe development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for Normal Ordering with a $p$-value of $p_mathrm{IO} = 15.3%$ and $mathrm{CL}_mathrm{s}=53.3%$ for the Inverted Ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $delta_mathrm{CP}$ and obtained from energies $E_ u gtrsim 5,mathrm{GeV}$, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
150 - William C. Louis 2018
The MINOS/MINOS+ experiment has recently reported stringent limits on $ u_mu$ disappearance that appear to rule out the 3+1 sterile neutrino model. However, in this paper we wish to point out problems associated with the MINOS/MINOS+ analysis. In par ticular, we find that MINOS/MINOS+ has either underestimated their systematic errors and/or has obtained evidence for physics beyond the 3-neutrino paradigm. Either case would invalidate the limits on $ u_mu$ disappearance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا