ﻻ يوجد ملخص باللغة العربية
We explore how to mitigate the clustering distortions in Lyman-$alpha$ emitters (LAEs) samples caused by the miss-identification of the Lyman-$alpha$ (Ly$alpha$) wavelength in their Ly$alpha$ line profiles. We use the Ly$alpha$ line profiles from our previous LAE theoretical model that includes radiative transfer in the interstellar and intergalactic mediums. We introduce a novel approach to measure the systemic redshift of LAEs from their Ly$alpha$ line using neural networks. In detail, we assume that, for a fraction of the whole LAE population their systemic redshift is determined precisely through other spectral features. We then use this subset to train a neural network that predicts the Ly$alpha$ wavelength given a Ly$alpha$ line profile. We test two different training sets: i) the LAEs are selected homogeneously and ii) only the brightest LAEs are selected. In comparison with previous approaches in the literature, our methodology improves significantly both accuracy and precision in determining the Ly$alpha$ wavelength. In fact, after applying our algorithm in ideal Ly$alpha$ line profiles, we recover the clustering unperturbed down to 1cMpc/h. Then, we test the performance of our methodology in realistic Ly$alpha$ line profiles by downgrading their quality. The machine learning techniques work well even if the Ly$alpha$ line profile quality is decreased considerably. We conclude that LAE surveys such as HETDEX would benefit from determining with high accuracy the systemic redshift of a subpopulation and applying our methodology to estimate the systemic redshift of the rest of the galaxy sample.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broad
Identifying the mechanisms driving the escape of Lyman Continuum (LyC) photons is crucial to find Lyman Continuum Emitter (LCE) candidates. To understand the physical properties involved in the leakage of LyC photons, we investigate the connection be
The Lyman alpha (lya) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km/s compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics
We investigate the effect of peculiar velocities on the redshift space distribution of z>~2 galaxies, and we focus in particular on Ly-alpha emitters. We generate catalogues of dark matter (DM) halos and identify emitters with halos of the same co-mo
We present a clustering analysis of a sample of 238 Ly{$alpha$}-emitters at redshift 3<z<6 from the MUSE-Wide survey. This survey mosaics extragalactic legacy fields with 1h MUSE pointings to detect statistically relevant samples of emission line gal