ترغب بنشر مسار تعليمي؟ اضغط هنا

Usage Analysis of Mobile Devices

369   0   0.0 ( 0 )
 نشر من قبل Subhankar Mishra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mobile devices have evolved from just communication devices into an indispensable part of peoples lives in form of smartphones, tablets and smart watches. Devices are now more personal than ever and carry more information about a person than any other. Extracting user behaviour is rather difficult and time-consuming as most of the work previously has been manual or requires feature extraction. In this paper, a novel approach of user behavior detection is proposed with Deep Learning Network (DNN). Initial approach was to use recurrent neural network (RNN) along with LSTM for completely unsupervised analysis of mobile devices. Next approach is to extract features by using Long Short Term Memory (LSTM) to understand the user behaviour, which are then fed into the Convolution Neural Network (CNN). This work mainly concentrates on detection of user behaviour and anomaly detection for usage analysis of mobile devices. Both the approaches are compared against some baseline methods. Experiments are conducted on the publicly available dataset to show that these methods can successfully capture the user behaviors.



قيم البحث

اقرأ أيضاً

139 - Donghan Yu , Yong Li , Fengli Xu 2017
In this paper we present the first population-level, city-scale analysis of application usage on smartphones. Using deep packet inspection at the network operator level, we obtained a geo-tagged dataset with more than 6 million unique devices that la unched more than 10,000 unique applications across the city of Shanghai over one week. We develop a technique that leverages transfer learning to predict which applications are most popular and estimate the whole usage distribution based on the Point of Interest (POI) information of that particular location. We demonstrate that our technique has an 83.0% hitrate in successfully identifying the top five popular applications, and a 0.15 RMSE when estimating usage with just 10% sampled sparse data. It outperforms by about 25.7% over the existing state-of-the-art approaches. Our findings pave the way for predicting which apps are relevant to a user given their current location, and which applications are popular where. The implications of our findings are broad: it enables a range of systems to benefit from such timely predictions, including operating systems, network operators, appstores, advertisers, and service providers.
Gamification represents an effective way to incentivize user behavior across a number of computing applications. However, despite the fact that physical activity is essential for a healthy lifestyle, surprisingly little is known about how gamificatio n and in particular competitions shape human physical activity. Here we study how competitions affect physical activity. We focus on walking challenges in a mobile activity tracking application where multiple users compete over who takes the most steps over a predefined number of days. We synthesize our findings in a series of game and app design implications. In particular, we analyze nearly 2,500 physical activity competitions over a period of one year capturing more than 800,000 person days of activity tracking. We observe that during walking competitions, the average user increases physical activity by 23%. Furthermore, there are large increases in activity for both men and women across all ages, and weight status, and even for users that were previously fairly inactive. We also find that the composition of participants greatly affects the dynamics of the game. In particular, if highly unequal participants get matched to each other, then competition suffers and the overall effect on the physical activity drops significantly. Furthermore, competitions with an equal mix of both men and women are more effective in increasing the level of activities. We leverage these insights to develop a statistical model to predict whether or not a competition will be particularly engaging with significant accuracy. Our models can serve as a guideline to help design more engaging competitions that lead to most beneficial behavioral changes.
All mobile devices are energy-constrained. They use batteries that allows using the device for a limited amount of time. In general, energy attacks on mobile devices are denial of service (DoS) type of attacks. While previous studies have analyzed th e energy attacks in servers, no existing work has analyzed the energy attacks on mobile devices. As such, in this paper, we present the first systematic study on how to exploit the energy attacks on smartphones. In particular, we explore energy attacks from the following aspect: hardware components, software resources, and network communications through the design and implementation of concrete malicious apps, and malicious web pages. We quantitatively show how quickly we can drain the battery through each individual attack, as well as their combinations. Finally, we believe energy exploit will be a practical attack vector and mobile users should be aware of this type of attacks.
In todays world of big data, computational analysis has become a key driver of biomedical research. Recent exponential growth in the volume of available omics data has reshaped the landscape of contemporary biology, creating demand for a continuous f eedback loop that seamlessly integrates experimental biology techniques and bioinformatics tools. High-performance computational facilities are capable of processing considerable volumes of data, yet often lack an easy-to-use interface to guide the user in supervising and adjusting bioinformatics analysis in real-time. Here we report the development of Telescope, a novel interactive tool that interfaces with high-performance computational clusters to deliver an intuitive user interface for controlling and monitoring bioinformatics analyses in real-time. Telescope was designed to natively operate with a simple and straightforward interface using Web 2.0 technology compatible with most modern devices (e.g., tablets and personal smartphones). Telescope provides a modern and elegant solution to integrate computational analyses into the experimental environment of biomedical research. Additionally, it allows biomedical researchers to leverage the power of large computational facilities in a user-friendly manner. Telescope is freely available at https://github.com/Mangul-Lab-USC/telescope.
In this paper, we propose to identify compromised mobile devices from a network administrators point of view. Intuitively, inadvertent users (and thus their devices) who download apps through untrustworthy markets are often allured to install malicio us apps through in-app advertisement or phishing. We thus hypothesize that devices sharing a similar set of apps will have a similar probability of being compromised, resulting in the association between a device being compromised and apps in the device. Our goal is to leverage such associations to identify unknown compromised devices (i.e., devices possibly having yet currently not having known malicious apps) using the guilt-by-association principle. Admittedly, such associations could be quite weak as it is often hard, if not impossible, for an app to automatically download and install other apps without explicit initiation from a user. We describe how we can magnify such weak associations between devices and apps by carefully choosing parameters when applying graph-based inferences. We empirically show the effectiveness of our approach with a comprehensive study on the mobile network traffic provided by a major mobile service provider. Concretely, we achieve nearly 98% accuracy in terms of AUC (area under the ROC curve). Given the relatively weak nature of association, we further conduct in-depth analysis of the different behavior of a graph-inference approach, by comparing it to active DNS data. Moreover, we validate our results by showing that detected compromised devices indeed present undesirable behavior in terms of their privacy leakage and network infrastructure accessed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا