ﻻ يوجد ملخص باللغة العربية
Module for ab initio structure evolution (MAISE) is an open-source package for materials modeling and prediction. The codes main feature is an automated generation of neural network (NN) interatomic potentials for use in global structure searches. The systematic construction of Behler-Parrinello-type NN models approximating ab initio energy and forces relies on two approaches introduced in our recent studies. An evolutionary sampling scheme for generating reference structures improves the NNs mapping of regions visited in unconstrained searches, while a stratified training approach enables the creation of standardized NN models for multiple elements. A more flexible NN architecture proposed here expands the applicability of the stratified scheme for an arbitrary number of elements. The full workflow in the NN development is managed with a customizable MAISE-NET wrapper written in Python. The global structure optimization capability in MAISE is based on an evolutionary algorithm applicable for nanoparticles, films, and bulk crystals. A multitribe extension of the algorithm allows for an efficient simultaneous optimization of nanoparticles in a given size range. Implemented structure analysis functions include fingerprinting with radial distribution functions and finding space groups with the SPGLIB tool. This work overviews MAISEs available features, constructed models, and confirmed predictions.
Recent application of neural networks (NNs) to modeling interatomic interactions has shown the learning machines encouragingly accurate performance for select elemental and multicomponent systems. In this study, we explore the possibility of building
We investigate the use of invariant polynomials in the construction of data-driven interatomic potentials for material systems. The atomic body-ordered permutation-invariant polynomials (aPIPs) comprise a systematic basis and are constructed to prese
This work presents Neural Equivariant Interatomic Potentials (NequIP), a SE(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aw
Prediction of material properties from first principles is often a computationally expensive task. Recently, artificial neural networks and other machine learning approaches have been successfully employed to obtain accurate models at a low computati
StructOpt, an open-source structure optimization suite, applies genetic algorithm and particle swarm methods to obtain atomic structures that minimize an objective function. The objective function typically consists of the energy and the error betwee