ﻻ يوجد ملخص باللغة العربية
Near-field, radially symmetric optical potentials centred around a levitated nanosphere can be used for sympathetic cooling and for creating a bound nanosphere-atom system analogous to a large molecule. We demonstrate that the long range, Coulomb-like potential produced by a single blue detuned field increases the collisional cross-section by eight orders of magnitude, allowing fast sympathetic cooling of a trapped nanosphere to microKelvin temperatures using cold atoms. By using two optical fields to create a combination of repulsive and attractive potentials, we demonstrate that a cold atom can be bound to a nanosphere creating a new levitated hybrid quantum system suitable for exploring quantum mechanics with massive particles.
We report three-dimensional cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically
We report quantum ground state cooling of a levitated nanoparticle in a room temperature environment. Using coherent scattering into an optical cavity we cool the center of mass motion of a $143$ nm diameter silica particle by more than $7$ orders of
We report on cooling the center-of-mass motion of a nanoparticle due to a purely quadratic coupling between its motion and the optical field of a high finesse cavity. The resulting interaction gives rise to a Van der Pol nonlinear damping, which is a
We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate
In this paper we study the quantum dynamics of an electron/hole in a two-dimensional quantum ring within a spherical space. For this geometry, we consider a harmonic confining potential. Suggesting that the quantum ring is affected by the presence of