ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid quantum system formed by trapping atoms in the near-field of a levitated nanosphere

112   0   0.0 ( 0 )
 نشر من قبل Peter Barker
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near-field, radially symmetric optical potentials centred around a levitated nanosphere can be used for sympathetic cooling and for creating a bound nanosphere-atom system analogous to a large molecule. We demonstrate that the long range, Coulomb-like potential produced by a single blue detuned field increases the collisional cross-section by eight orders of magnitude, allowing fast sympathetic cooling of a trapped nanosphere to microKelvin temperatures using cold atoms. By using two optical fields to create a combination of repulsive and attractive potentials, we demonstrate that a cold atom can be bound to a nanosphere creating a new levitated hybrid quantum system suitable for exploring quantum mechanics with massive particles.



قيم البحث

اقرأ أيضاً

We report three-dimensional cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically expected from the presence of both linear and quadratic terms in the interaction between the particle motion and the cavity field. By achieving nanometer-level control over the particle location we optimize the position-dependent coupling and demonstrate axial cooling by two orders of magnitude at background pressures as high as $6times10^{-2}$ mbar. We also estimate a significant ($> 40$ dB) suppression of laser phase noise, and hence of residual heating, which is a specific feature of the coherent scattering scheme. The observed performance implies that quantum ground state cavity cooling of levitated nanoparticles can be achieved for background pressures below $10^{-7}$ mbar.
We report quantum ground state cooling of a levitated nanoparticle in a room temperature environment. Using coherent scattering into an optical cavity we cool the center of mass motion of a $143$ nm diameter silica particle by more than $7$ orders of magnitude to $n_x=0.43pm0.03$ phonons along the cavity axis, corresponding to a temperature of $12~mu$K. We infer a heating rate of $Gamma_x/2pi = 21pm 3$ kHz, which results in a coherence time of $7.6~mu$s -- or $15$ coherent oscillations -- while the particle is optically trapped at a pressure of $10^{-6}$ mbar. The inferred optomechanical coupling rate of $g_x/2pi = 71$ kHz places the system well into the regime of strong cooperativity ($C approx 5$). We expect that a combination of ultra-high vacuum with free-fall dynamics will allow to further expand the spatio-temporal coherence of such nanoparticles by several orders of magnitude, thereby opening up new opportunities for macrosopic quantum experiments.
We report on cooling the center-of-mass motion of a nanoparticle due to a purely quadratic coupling between its motion and the optical field of a high finesse cavity. The resulting interaction gives rise to a Van der Pol nonlinear damping, which is a nalogous to conventional parametric feedback where the cavity provides passive feedback without measurement. We show experimentally that like feedback cooling the resulting energy distribution is strongly nonthermal and can be controlled by the nonlinear damping of the cavity. As quadratic coupling has a prominent role in proposed protocols to generate deeply nonclassical states, our work represents a first step for producing such states in a levitated system.
We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate with the resonant wavelength, we observe a reflectance of up to 75% for the guided mode. Each atom behaves as a partially-reflecting mirror and an ordered chain of about 2000 atoms is sufficient to realize an efficient Bragg mirror. Measurements of the reflection spectra as a function of the lattice period and the probe polarization are reported. The latter shows the effect of the chiral character of nanoscale waveguides on this reflection. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum network capabilities and the study of many-body effects emerging from long-range interactions.
In this paper we study the quantum dynamics of an electron/hole in a two-dimensional quantum ring within a spherical space. For this geometry, we consider a harmonic confining potential. Suggesting that the quantum ring is affected by the presence of an Aharonov-Bohm flux and an uniform magnetic field, we solve the Schrodinger equation for this problem and obtain exactly the eigenvalues of energy and corresponding eigenfunctions for this nanometric quantum system. Afterwards, we calculate the magnetization and persistent current are calculated, and discuss influence of curvature of space on these values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا