ﻻ يوجد ملخص باللغة العربية
In arbitrary Carnot groups we study intrinsic graphs of maps with horizontal target. These graphs are $C^1_H$ regular exactly when the map is uniformly intrinsically differentiable. Our first main result characterizes the uniformly intrinsic differentiability by means of Holder properties along the projections of left-invariant vector fields on the graph. We strengthen the result in step-2 Carnot groups for intrinsic real-valued maps by only requiring horizontal regularity. We remark that such a refinement is not possible already in the easiest step-3 group. As a by-product of independent interest, in every Carnot group we prove an area-formula for uniformly intrinsically differentiable real-valued maps. We also explicitly write the area element in terms of the intrinsic derivatives of the map.
We prove that in arbitrary Carnot groups $mathbb G$ of step 2, with a splitting $mathbb G=mathbb Wcdotmathbb L$ with $mathbb L$ one-dimensional, the graph of a continuous function $varphicolon Usubseteq mathbb Wto mathbb L$ is $C^1_{mathrm{H}}$-regul
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of the first author and R. Schul in Euclidean space,
We give a construction of direct limits in the category of complete metric scalable groups and provide sufficient conditions for the limit to be an infinite-dimensional Carnot group. We also prove a Rademacher-type theorem for such limits.
In this paper, we construct Holder maps to Carnot groups equipped with a Carnot metric, especially the first Heisenberg group $mathbb{H}$. Pansu and Gromov observed that any surface embedded in $mathbb{H}$ has Hausdorff dimension at least 3, so there
In this paper we prove the one-dimensional Preiss theorem in the first Heisenberg group $mathbb H^1$. More precisely we show that a Radon measure $phi$ on $mathbb H^1$ with positive and finite one-density with respect to the Koranyi distance is suppo