ﻻ يوجد ملخص باللغة العربية
We employ physics-informed neural networks (PINNs) to infer properties of biological materials using synthetic data. In particular, we successfully apply PINNs on inferring the thrombus permeability and visco-elastic modulus from thrombus deformation data, which can be described by the fourth-order Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are encoded into the loss function, where partial derivatives can be obtained through automatic differentiation (AD). In addition, to tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main neural network to approximate the second-derivative of the energy potential term. Our model can predict simultaneously unknown parameters and velocity, pressure, and deformation gradient fields by merely training with partial information among all data, i.e., phase-field and pressure measurements, and is also highly flexible in sampling within the spatio-temporal domain for data acquisition. We validate our model by numerical solutions from the spectral/textit{hp} element method (SEM) and demonstrate its robustness by training it with noisy measurements. Our results show that PINNs can accurately infer the material properties with noisy synthetic data, and thus they have great potential for inferring these properties from experimental multi-modality and multi-fidelity data.
Physics-informed neural networks (PINNs) are effective in solving integer-order partial differential equations (PDEs) based on scattered and noisy data. PINNs employ standard feedforward neural networks (NNs) with the PDEs explicitly encoded into the
Inverse design arises in a variety of areas in engineering such as acoustic, mechanics, thermal/electronic transport, electromagnetism, and optics. Topology optimization is a major form of inverse design, where we optimize a designed geometry to achi
Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for whi
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems
In this work, we use a combination of formal upscaling and data-driven machine learning for explicitly closing a nonlinear transport and reaction process in a multiscale tissue. The classical effectiveness factor model is used to formulate the macros