ﻻ يوجد ملخص باللغة العربية
Observations of extrasolar planets were not projected to be a significant part of the Spitzer Space Telescopes mission when it was conceived and designed. Nevertheless, Spitzer was the first facility to detect thermal emission from a hot Jupiter, and the range of Spitzers exoplanetary investigations grew to encompass transiting planets, microlensing, brown dwarfs, and direct imaging searches and astrometry. Spitzer used phase curves to measure the longitudinal distribution of heat as well as time-dependent heating on hot Jupiters. Spitzers secondary eclipse observations strongly constrained the dayside thermal emission spectra and corresponding atmospheric compositions of hot Jupiters, and the timings of eclipses were used for studies of orbital dynamics. Spitzers sensitivity to carbon-based molecules such as methane and carbon monoxide was key to atmospheric composition studies of transiting exoplanets as well as imaging spectroscopy of brown dwarfs, and complemented Hubble spectroscopy at shorter wavelengths. Spitzers capability for long continuous observing sequences enabled searches for new transiting planets around cool stars, and helped to define the architectures of planetary systems like TRAPPIST-1. Spitzer measured masses for small planets at large orbital distances using microlensing parallax. Spitzer observations of brown dwarfs probed their temperatures, masses, and weather patterns. Imaging and astrometry from Spitzer was used to discover new planetary mass brown dwarfs and to measure distances and space densities of many others.
Over the past several decades, thousands of planets have been discovered outside of our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader con
The research of effective and reliable detrending methods for Spitzer data is of paramount importance for the characterization of exoplanetary atmospheres. To date, the totality of exoplanetary observations in the mid- and far-infrared, at wavelength
Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for ex
A profound shift in the study of cosmology came with the discovery of thousands of exoplanets and the possibility of the existence of billions of them in our Galaxy. The biggest goal in these searches is whether there are other life-harbouring planet
Several of NASA missions (TESS, JWST, WFIRST, etc.) and mission concepts (LUVOIR, HabEx, and OST) emphasize the exploration and characterization of exoplanets, and the study of the interstellar medium. We anticipate that a much broader set of chemica