ﻻ يوجد ملخص باللغة العربية
Modern speech enhancement algorithms achieve remarkable noise suppression by means of large recurrent neural networks (RNNs). However, large RNNs limit practical deployment in hearing aid hardware (HW) form-factors, which are battery powered and run on resource-constrained microcontroller units (MCUs) with limited memory capacity and compute capability. In this work, we use model compression techniques to bridge this gap. We define the constraints imposed on the RNN by the HW and describe a method to satisfy them. Although model compression techniques are an active area of research, we are the first to demonstrate their efficacy for RNN speech enhancement, using pruning and integer quantization of weights/activations. We also demonstrate state update skipping, which reduces the computational load. Finally, we conduct a perceptual evaluation of the compressed models to verify audio quality on human raters. Results show a reduction in model size and operations of 11.9$times$ and 2.9$times$, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR. Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351$times$ better than previous work.
Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be eff
This study proposes a trainable adaptive window switching (AWS) method and apply it to a deep-neural-network (DNN) for speech enhancement in the modified discrete cosine transform domain. Time-frequency (T-F) mask processing in the short-time Fourier
In noisy conditions, knowing speech contents facilitates listeners to more effectively suppress background noise components and to retrieve pure speech signals. Previous studies have also confirmed the benefits of incorporating phonetic information i
Recent research on speech enhancement (SE) has seen the emergence of deep-learning-based methods. It is still a challenging task to determine the effective ways to increase the generalizability of SE under diverse test conditions. In this study, we c
We explore the possibility of leveraging accelerometer data to perform speech enhancement in very noisy conditions. Although it is possible to only partially reconstruct users speech from the accelerometer, the latter provides a strong conditioning s