ﻻ يوجد ملخص باللغة العربية
We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of $U_c/kappa=3.834(14)$ and the critical exponent $z u=1.185(43)$. Under the assumption that this corresponds to the expected anti-ferromagnetic Mott transition, we are also able to provide a preliminary estimate $beta=1.095(37)$ for the critical exponent of the order parameter. We consider our findings in view of the $SU(2)$ Gross-Neveu, or chiral Heisenberg, universality class. We also discuss the computational scaling of the Hybrid Monte Carlo algorithm, and possible extensions of our work to carbon nanotubes, fullerenes, and topological insulators.
We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algo
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physic
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreem
In this article, we discuss the non-trivial collective charge excitations (plasmons) of the extended square-lattice Hubbard model. Using a fully non-perturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-fill
We show how to construct fully symmetric, gapped states without topological order on a honey- comb lattice for S = 1/2 spins using the language of projected entangled pair states(PEPS). An explicit example is given for the virtual bond dimension D =