ترغب بنشر مسار تعليمي؟ اضغط هنا

The Semimetal-Mott Insulator Quantum Phase Transition of the Hubbard Model on the Honeycomb Lattice

126   0   0.0 ( 0 )
 نشر من قبل Johann Ostmeyer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully controlled analyses of the Trotter error, the thermodynamic limit, and finite-size scaling with inverse temperature, we find a critical coupling of $U_c/kappa=3.834(14)$ and the critical exponent $z u=1.185(43)$. Under the assumption that this corresponds to the expected anti-ferromagnetic Mott transition, we are also able to provide a preliminary estimate $beta=1.095(37)$ for the critical exponent of the order parameter. We consider our findings in view of the $SU(2)$ Gross-Neveu, or chiral Heisenberg, universality class. We also discuss the computational scaling of the Hybrid Monte Carlo algorithm, and possible extensions of our work to carbon nanotubes, fullerenes, and topological insulators.



قيم البحث

اقرأ أيضاً

We provide a unified, comprehensive treatment of all operators that contribute to the anti-ferromagnetic, ferromagnetic, and charge-density-wave structure factors and order parameters of the hexagonal Hubbard Model. We use the Hybrid Monte Carlo algo rithm to perform a systematic, carefully controlled analysis in the temporal Trotter error and of the thermodynamic limit. We expect our findings to improve the consistency of Monte Carlo determinations of critical exponents. We perform a data collapse analysis and determine the critical exponent $beta=0.898(37)$ for the semimetal-Mott insulator transition in the hexagonal Hubbard Model. Our methods are applicable to a wide range of lattice theories of strongly correlated electrons.
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physic s of the Mott-insulating phase of the system. Exact diagonalizations of the so-derived models on small clusters are performed, in order to assess the quality of the effective low-energy theory in the spin-liquid regime. We show that six-spin interactions on the elementary loop of the honeycomb lattice are the dominant sub-leading effective couplings. A minimal spin model is shown to reproduce most of the energetic properties of the Hubbard model on the honeycomb lattice in its spin-liquid phase. Surprisingly, a more elaborate effective low-energy spin model obtained by a systematic graph expansion rather disagrees beyond a certain point with the numerical results for the Hubbard model at intermediate couplings.
141 - K. Seki , Y. Ohta 2012
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreem ent with a recent large-scale quantum Monte Carlo simulation. Calculated staggered magnetization increases continuously with $U$ and thus we find the phase transition is of a second order. We also find that the semimetal-insulator transition occurs at infinitesimally small interaction and thus a paramagnetic insulating state appears in a wide interaction range. A crossover behavior of electrons from itinerant to localized character found in the calculated single-particle excitation spectra and short-range spin correlation functions indicates that an effective spin model for the paramagnetic insulating phase is far from a simple Heisenberg model with a nearest-neighbor exchange interaction.
In this article, we discuss the non-trivial collective charge excitations (plasmons) of the extended square-lattice Hubbard model. Using a fully non-perturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-fill ing. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly-correlated phase. The momentum-resolved charge susceptibility is also computed on the basis of the Euclidean charge density-density correlator. In agreement with previous EDMFT studies, we find that at large strength of the electron-electron interaction, the plasmon dispersion develops two branches.
We show how to construct fully symmetric, gapped states without topological order on a honey- comb lattice for S = 1/2 spins using the language of projected entangled pair states(PEPS). An explicit example is given for the virtual bond dimension D = 4. Four distinct classes differing by lattice quantum numbers are found by applying the systematic classification scheme introduced by two of the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015)]. Lack of topological degeneracy or other conventional forms of symmetry breaking, and the existence of energy gap in the proposed wave functions, are checked by numerical calculations of the entanglement entropy and various correlation functions. Our work provides the first explicit realization of a featureless quantum insulator for spin-1/2 particles on a honeycomb lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا