ﻻ يوجد ملخص باللغة العربية
A quantum circuit is a computational unit that transforms an input quantum state to an output one. A natural way to reason about its behavior is to compute explicitly the unitary matrix implemented by it. However, when the number of qubits increases, the matrix dimension grows exponentially and the computation becomes intractable. In this paper, we propose a symbolic approach to reasoning about quantum circuits. It is based on a small set of laws involving some basic manipulations on vectors and matrices. This symbolic reasoning scales better than the explicit one and is well suited to be automated in Coq, as demonstrated with some typical examples.
We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. We extend the MetaCoq erasure output language with typing information and use it as an intermediate representation, which we call $lambda^T_square$.
This talk describes how a combination of symbolic computation techniques with first-order theorem proving can be used for solving some challenges of automating program analysis, in particular for generating and proving properties about the logically
We present a new way of embedding functional languages into the Coq proof assistant by using meta-programming. This allows us to develop the meta-theory of the language using the deep embedding and provides a convenient way for reasoning about concre
We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. As part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be