ترغب بنشر مسار تعليمي؟ اضغط هنا

Using models to improve optimizers for variational quantum algorithms

85   0   0.0 ( 0 )
 نشر من قبل Kevin J. Sung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational quantum algorithms are a leading candidate for early applications on noisy intermediate-scale quantum computers. These algorithms depend on a classical optimization outer-loop that minimizes some function of a parameterized quantum circuit. In practice, finite sampling error and gate errors make this a stochastic optimization with unique challenges that must be addressed at the level of the optimizer. The sharp trade-off between precision and sampling time in conjunction with experimental constraints necessitates the development of new optimization strategies to minimize overall wall clock time in this setting. In this work, we introduce two optimization methods and numerically compare their performance with common methods in use today. The methods are surrogate model-based algorithms designed to improve reuse of collected data. They do so by utilizing a least-squares quadratic fit of sampled function values within a moving trusted region to estimate the gradient or a policy gradient. To make fair comparisons between optimization methods, we develop experimentally relevant cost models designed to balance efficiency in testing and accuracy with respect to cloud quantum computing systems. The results here underscore the need to both use relevant cost models and optimize hyperparameters of existing optimization methods for competitive performance. The methods introduced here have several practical advantages in realistic experimental settings, and we have used one of them successfully in a separately published experiment on Googles Sycamore device.



قيم البحث

اقرأ أيضاً

Variational Quantum Algorithms (VQAs) are widely viewed as the best hope for near-term quantum advantage. However, recent studies have shown that noise can severely limit the trainability of VQAs, e.g., by exponentially flattening the cost landscape and suppressing the magnitudes of cost gradients. Error Mitigation (EM) shows promise in reducing the impact of noise on near-term devices. Thus, it is natural to ask whether EM can improve the trainability of VQAs. In this work, we first show that, for a broad class of EM strategies, exponential cost concentration cannot be resolved without committing exponential resources elsewhere. This class of strategies includes as special cases Zero Noise Extrapolation, Virtual Distillation, Probabilistic Error Cancellation, and Clifford Data Regression. Second, we perform analytical and numerical analysis of these EM protocols, and we find that some of them (e.g., Virtual Distillation) can make it harder to resolve cost function values compared to running no EM at all. As a positive result, we do find numerical evidence that Clifford Data Regression (CDR) can aid the training process in certain settings where cost concentration is not too severe. Our results show that care should be taken in applying EM protocols as they can either worsen or not improve trainability. On the other hand, our positive results for CDR highlight the possibility of engineering error mitigation methods to improve trainability.
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications , although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.
We show that nonlinear problems including nonlinear partial differential equations can be efficiently solved by variational quantum computing. We achieve this by utilizing multiple copies of variational quantum states to treat nonlinearities efficien tly and by introducing tensor networks as a programming paradigm. The key concepts of the algorithm are demonstrated for the nonlinear Schr{o}dinger equation as a canonical example. We numerically show that the variational quantum ansatz can be exponentially more efficient than matrix product states and present experimental proof-of-principle results obtained on an IBM Q device.
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term q uantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy intermediate-scale quantum (NISQ) devices. These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical fe edback loop. A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device. The cost function is constructed such that finding the ansatz parameters that minimize its value, solves some problem of interest. We focus specifically on the Variational Quantum Linear Solver (VQLS), and examine the effect of several gradient-free and gradient-based classical optimizers on performance. We focus on both the average rate of convergence of the classical optimizers studied, as well as the distribution of their average termination cost values, and how these are affected by noise. Our work demonstrates that realistic noise levels on NISQ devices present a challenge to the optimization process. All classical optimizers appear to be very negatively affected by the presence of realistic noise. If noise levels are significantly improved, there may be a good reason for preferring gradient-based methods in the future, which performed better than the gradient-free methods with the only shot-noise present. The gradient-free optimizers, Simultaneous Perturbation Stochastic Approximation (SPSA) and Powells method, and the gradient-based optimizers, AMSGrad and BFGS performed the best in the noisy simulation, and appear to be less affected by noise than the rest of the methods. SPSA appears to be the best performing method. COBYLA, Nelder-Mead and Conjugate-Gradient methods appear to be the most heavily affected by noise, with even slight noise levels significantly impacting their performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا