ترغب بنشر مسار تعليمي؟ اضغط هنا

A strontium optical lattice clock with $1 times 10^{-17}$ uncertainty and measurement of its absolute frequency

89   0   0.0 ( 0 )
 نشر من قبل William Bowden Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the absolute frequency of the 5s$^2$ $^1$S$_0$ to 5s5p $^3$P$_0$ transition in $^{87}$Sr, which is a secondary representation of the SI second. We describe the optical lattice clock apparatus used for the measurement, and we focus in detail on how its systematic frequency shifts are evaluated with a total fractional uncertainty of $1 times 10^{-17}$. Traceability to the International System of Units is provided via comparison to International Atomic Time (TAI). Gathering data over 5- and 15-day periods, with the lattice clock operating on average 74$%$ of the time, we measure the frequency of the transition to be 429228004229873.1(5) Hz, which corresponds to a fractional uncertainty of $1 times 10^{-15}$. We describe in detail how this uncertainty arises from the intermediate steps linking the optical frequency standard, through our local time scale UTC(NPL), to an ensemble of primary and secondary frequency standards which steer TAI. The calculated absolute frequency of the transition is in good agreement with recent measurements carried out in other laboratories around the world.



قيم البحث

اقرأ أيضاً

We report on an improved systematic evaluation of the JILA SrI optical lattice clock, achieving a nearly identical systematic uncertainty compared to the previous strontium accuracy record set by the JILA SrII optical lattice clock (OLC) at $2.1 time s 10^{-18}$. This improves upon the previous evaluation of the JILA SrI optical lattice clock in 2013, and we achieve a more than twenty-fold reduction in systematic uncertainty to $2.0 times 10^{-18}$. A seven-fold improvement in clock stability, reaching $4.8 times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds, allows the clock to average to its systematic uncertainty in under 10 minutes. We improve the systematic uncertainty budget in several important ways. This includes a novel scheme for taming blackbody radiation-induced frequency shifts through active stabilization and characterization of the thermal environment, inclusion of higher-order terms in the lattice light shift, and updated atomic coefficients. Along with careful control of other systematic effects, we achieve low temporal drift of systematic offsets and high uptime of the clock. We additionally present an improved evaluation of the second order Zeeman coefficient that is applicable to all Sr optical lattice clocks. These improvements in performance have enabled several important studies including frequency ratio measurements through the Boulder Area Clock Optical Network (BACON), a high precision comparison with the JILA 3D lattice clock, a demonstration of a new all-optical time scale combining SrI and a cryogenic silicon cavity, and a high sensitivity search for ultralight scalar dark matter.
124 - N. Poli , M. Schioppo , S. Vogt 2014
We report on a transportable optical clock, based on laser-cooled strontium atoms trapped in an optical lattice. The experimental apparatus is composed of a compact source of ultra-cold strontium atoms including a compact cooling laser set-up and a t ransportable ultra-stable laser for interrogating the optical clock transition. The whole setup (excluding electronics) fits within a volume of less than 2 m$^3$. The high degree of operation reliability of both systems allowed the spectroscopy of the clock transition to be performed with 10 Hz resolution. We estimate an uncertainty of the clock of $7times10^{-15}$.
A transportable optical clock refer to the $4s^2S_{1/2}-3d^2D_{5/2}$ electric quadrupole transition at 729 nm of single $^{40}Ca^+$ trapped in mini Paul trap has been developed. The physical system of $^{40}Ca^+$ optical clock is re-engineered from a bulky and complex setup to an integration of two subsystems: a compact single ion unit including ion trapping and detection modules, and a compact laser unit including laser sources, beam distributor and frequency reference modules. Apart from the electronics, the whole equipment has been constructed within a volume of 0.54 $m^3$. The systematic fractional uncertainty has been evaluated to be $7.7times 10^{-17}$, and the Allan deviation fits to be $2.3times {10}^{-14}/sqrt{tau}$ by clock self-comparison with a probe pulse time 20 ms.
We present a transportable optical clock (TOC) with $^{87}$Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of ${7.4 times 10^{-17}}$ which is currently limited by the statistics of the determi nation of the residual lattice light shift. The measurements confirm that the systematic uncertainty is reduceable to below the design goal of $1 times 10^{-17}$. The instability of our TOC is $1.3 times 10^{-15}/sqrt{(tau/s)}$. Both, the systematic uncertainty and the instability are to our best knowledge currently the best achieved with any type of transportable clock. For autonomous operation the TOC is installed in an air-conditioned car-trailer. It is suitable for chronometric leveling with sub-meter resolution as well as intercontinental cross-linking of optical clocks, which is essential for a redefiniton of the SI second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and it is a first step to space borne optical clocks
The absolute frequency of the $^{87}{rm Sr}$ clock transition measured in 2015 was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for a n evaluation interval of five days instead of the conventional interval of one month which is regularly employed in Circular T. The calibration on a five-day basis removed the uncertainty in assimilating the TAI scale of the five-day mean to that of the one-month mean. The reevaluation resulted in the total uncertainty of $10^{-16}$ level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا