ﻻ يوجد ملخص باللغة العربية
Race logic is a relative timing code that represents information in a wavefront of digital edges on a set of wires in order to accelerate dynamic programming and machine learning algorithms. Skyrmions, bubbles, and domain walls are mobile magnetic configurations (solitons) with applications for Boolean data storage. We propose to use current-induced displacement of these solitons on magnetic racetracks as a native temporal memory for race logic computing. Locally synchronized racetracks can spatially store relative timings of digital edges and provide non-destructive read-out. The linear kinematics of skyrmion motion, the tunability and low-voltage asynchronous operation of the proposed device, and the elimination of any need for constant skyrmion nucleation make these magnetic racetracks a natural memory for low-power, high-throughput race logic applications.
Lateral inhibition is an important functionality in neuromorphic computing, modeled after the biological neuron behavior that a firing neuron deactivates its neighbors belonging to the same layer and prevents them from firing. In most neuromorphic ha
Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in hybrid spintronic devices with much lower operation power than conventional charge-based electronics. Their wave nature can be exploited in majority
We study single-electron tunneling (SET) characteristics in crystalline PbS/InP junctions, that exhibit single-electron Coulomb-blockade staircases along with memory and memory-fading behaviors. This gives rise to both short-term and long-term plasti
We report the fabrication and electron transport properties of nanoparticles self-assembled networks (NPSAN) of molecular switches (azobenzene derivatives) interconnected by Au nanoparticles, and we demonstrate optically-driven switchable logical ope
We propose a heterostructure device comprised of magnets and piezoelectrics that significantly improves the delay and the energy dissipation of an all-spin logic (ASL) device. This paper studies and models the physics of the device, illustrates its o