ﻻ يوجد ملخص باللغة العربية
The Epps effect is key phenomenology relating to high frequency correlation dynamics in the financial markets. We argue that it can be used to determine whether trades at a tick-by-tick scale are best represented as samples from a Brownian diffusion, perhaps dressed with jumps; or as samples from truly discrete events represented as connected point processes. This can answer the question of whether correlations are better understood as an emergent time scale dependent property. In other words: Is the Epps effect a bias? To this end, we derive the Epps effect arising from asynchrony and provide a refined method to correct for the effect. The correction is compared against two existing methods correcting for asynchrony. We propose three experiments to discriminate between possible underlying representations: whether the data is best thought to be generated by discrete connected events (as proxied by a D-type Hawkes process), or if they can be approximated to arise from Brownian diffusions, with or without jumps. We then demonstrate how the Hawkes representation easily recovers the phenomenology reported in the literature; phenomenology that cannot be recovered using a Brownian representation, without additional ad-hoc model complexity, even with jumps. The experiments are applied to trade and quote data from the Johannesburg Stock Exchange. We find evidence suggesting that high frequency correlation dynamics are most faithfully recovered when tick-by-tick data is represented as a web of inter-connected discrete events rather than sampled or averaged from underlying continuous Brownian diffusions irrespective of whether or not they are dressed with jumps.
Time and the choice of measurement time scales is fundamental to how we choose to represent information and data in finance. This choice implies both the units and the aggregation scales for the resulting statistical measurables used to describe a fi
We compare the Malliavin-Mancino and Cuchiero-Teichmann Fourier instantaneous estimators to investigate the impact of the Epps effect arising from asynchrony in the instantaneous estimates. We demonstrate the instantaneous Epps effect under a simulat
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
We revisit and demonstrate the Epps effect using two well-known non-parametric covariance estimators; the Malliavin and Mancino (MM), and Hayashi and Yoshida (HY) estimators. We show the existence of the Epps effect in the top 10 stocks from the Joha
Understanding the statistical properties of recurrence intervals of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been exte