ﻻ يوجد ملخص باللغة العربية
The last decade has seen a rapid development in asteroseismology thanks to the CoRoT and Kepler missions. With more detailed asteroseismic observations available, it is becoming possible to infer exactly how oscillations are driven and dissipated in solar-type stars. We have carried out three-dimensional (3D) stellar atmosphere simulations together with one-dimensional (1D) stellar structural models of key benchmark turn-off and subgiant stars to study this problem from a theoretical perspective. Mode excitation and damping rates are extracted from 3D and 1D stellar models based on analytical expressions. Mode velocity amplitudes are determined by the balance between stochastic excitation and linear damping, which then allows the estimation of the frequency of maximum oscillation power, $ u_{max}$, for the first time based on ab initio and parameter-free modelling. We have made detailed comparisons between our numerical results and observational data and achieved very encouraging agreement for all of our target stars. This opens the exciting prospect of using such realistic 3D hydrodynamical stellar models to predict solar-like oscillations across the HR-diagram, thereby enabling accurate estimates of stellar properties such as mass, radius and age.
Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also prese
Motivated by the recent detection of stochastically excited modes in the massive star V1449 Aql (Belkacem et al., 2009b), already known to be a $beta$ Cephei, we theoretically investigate the driving by turbulent convection. By using a full non-adiab
Space-borne missions CoRoT and {it Kepler} are providing a rich harvest of high-quality constraints on solar-like pulsators. Among the seismic parameters, mode damping rates remains poorly understood and thus barely used to infer physical properties
We present a brief overview of the history of attempts to obtain a clear detection of solar-like oscillations in cluster stars, and discuss the results on the first clear detection, which was made by the Kepler Asteroseismic Science Consortium (KASC) Working Group 2.
Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago i