ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluent Response Generation for Conversational Question Answering

99   0   0.0 ( 0 )
 نشر من قبل Ashutosh Baheti
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Question answering (QA) is an important aspect of open-domain conversational agents, garnering specific research focus in the conversational QA (ConvQA) subtask. One notable limitation of recent ConvQA efforts is the response being answer span extraction from the target corpus, thus ignoring the natural language generation (NLG) aspect of high-quality conversational agents. In this work, we propose a method for situating QA responses within a SEQ2SEQ NLG approach to generate fluent grammatical answer responses while maintaining correctness. From a technical perspective, we use data augmentation to generate training data for an end-to-end system. Specifically, we develop Syntactic Transformations (STs) to produce question-specific candidate answer responses and rank them using a BERT-based classifier (Devlin et al., 2019). Human evaluation on SQuAD 2.0 data (Rajpurkar et al., 2018) demonstrate that the proposed model outperforms baseline CoQA and QuAC models in generating conversational responses. We further show our models scalability by conducting tests on the CoQA dataset. The code and data are available at https://github.com/abaheti95/QADialogSystem.



قيم البحث

اقرأ أيضاً

Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artifici al intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the users information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
Conversational Question Answering is a challenging task since it requires understanding of conversational history. In this project, we propose a new system RoBERTa + AT +KD, which involves rationale tagging multi-task, adversarial training, knowledge distillation and a linguistic post-process strategy. Our single model achieves 90.4(F1) on the CoQA test set without data augmentation, outperforming the current state-of-the-art single model by 2.6% F1.
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving information from ordered utterances. However, the sequential order of dialogue is important to build a robust spoken conversational question answering system, and the changes of utterances order may severely result in low-quality and incoherent corpora. To this end, we introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence among spoken documents. Specifically, we design a joint learning framework where the auxiliary self-supervised tasks can enable the pre-trained SCQA systems towards more coherent and meaningful spoken dialogue learning. We also utilize the proposed self-supervised learning tasks to capture intra-sentence coherence. Experimental results demonstrate that our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models. Our method achieves state-of-the-art results on the Spoken-CoQA dataset.
105 - Boyuan Pan , Hao Li , Ziyu Yao 2019
This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing inte lligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning (ReDR) network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passa ge comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا