ﻻ يوجد ملخص باللغة العربية
We consider $G_2$-structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. First studied by Friedrich and Ivanov, the resulting system of partial differential equations describes compactifications of the heterotic string to three dimensions, and is often referred to as the $G_2$-Strominger system. We study the moduli space of solutions and prove that the space of infinitesimal deformations, modulo automorphisms, is finite dimensional. We also provide a new family of solutions to this system, on $T^3$-bundles over $K3$ surfaces and for infinitely many different instanton bundles, adapting a construction of Fu-Yau and the second named author. In particular, we exhibit the first examples of $T$-dual solutions for this system of equations.
We consider $G_2$ structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. The r
We construct new examples of solutions of the Hull-Strominger system on non-Kahler torus bundles over K3 surfaces, with the property that the connection $ abla$ on the tangent bundle is Hermite-Yang-Mills. With this ansatz for the connection $ abla$,
We construct new smooth solutions to the Hull-Strominger system, showing that the Fu-Yau solution on torus bundles over K3 surfaces can be generalized to torus bundles over K3 orbifolds. In particular, we prove that, for $13 leq k leq 22$ and $14leq
We consider the heterotic string on Calabi-Yau manifolds admitting a Strominger-Yau-Zaslow fibration. Upon reducing the system in the $T^3$-directions, the Hermitian Yang-Mills conditions can then be reinterpreted as a complex flat connection on $mat
Suppose $(X, g)$ is a compact, spin Riemannian 7-manifold, with Dirac operator $D$. Let $G$ be SU$(m)$ or U$(m)$, and $Eto X$ be a rank $m$ complex bundle with $G$-structure. Write ${mathcal B}_E$ for the infinite-dimensional moduli space of connecti