ﻻ يوجد ملخص باللغة العربية
The Shafarevich-Tate group $W (mathscr{A})$ measures the failure of the Hasse principle for an abelian variety $mathscr{A}$. Using a correspondence between the abelian varieties and the higher dimensional non-commutative tori, we prove that $W (mathscr{A})cong Cl~(Lambda)oplus Cl~(Lambda)$ or $W (mathscr{A})cong left(mathbf{Z}/2^kmathbf{Z}right) oplus Cl_{~mathbf{odd}}~(Lambda)oplus Cl_{~mathbf{odd}}~(Lambda)$, where $Cl~(Lambda)$ is the ideal class group of a ring $Lambda$ associated to the K-theory of the non-commutative tori and $2^k $ divides the order of $Cl~(Lambda)$. The case of elliptic curves with complex multiplication is considered in detail.
We consider an abelian variety defined over a number field. We give conditional bounds for the order of its Tate-Shafarevich group, as well as conditional bounds for the Neron-Tate height of generators of its Mordell-Weil group. The bounds are implie
Faltings proved that there are finitely many abelian varieties of genus $g$ of a number field $K$, with good reduction outside a finite set of primes $S$. Fixing one of these abelian varieties $A$, we prove that there are finitely many smooth hypersu
Given an abelian variety over a number field, its Sato-Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the L-function of the abelian variety. It was previously shown by Fite, Kedlaya, Rotger, and Su
Let $k$ be a field of characteristic $q$, $cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. L
Let $S$ be the spectrum of a complete discrete valuation ring with fraction field of characteristic 0 and perfect residue field of characteristic $pgeq 3$. Let $G$ be a truncated Barsotti-Tate group of level 1 over $S$. If ``$G$ is not too supersingu