ترغب بنشر مسار تعليمي؟ اضغط هنا

$p$-Norm Flow Diffusion for Local Graph Clustering

190   0   0.0 ( 0 )
 نشر من قبل Kimon Fountoulakis
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Local graph clustering and the closely related seed set expansion problem are primitives on graphs that are central to a wide range of analytic and learning tasks such as local clustering, community detection, nodes ranking and feature inference. Prior work on local graph clustering mostly falls into two categories with numerical and combinatorial roots respectively. In this work, we draw inspiration from both fields and propose a family of convex optimization formulations based on the idea of diffusion with p-norm network flow for $pin (1,infty)$. In the context of local clustering, we characterize the optimal solutions for these optimization problems and show their usefulness in finding low conductance cuts around input seed set. In particular, we achieve quadratic approximation of conductance in the case of $p=2$ similar to the Cheeger-type bounds of spectral methods, constant factor approximation when $prightarrowinfty$ similar to max-flow based methods, and a smooth transition for general $p$ values in between. Thus, our optimization formulation can be viewed as bridging the numerical and combinatorial approaches, and we can achieve the best of both worlds in terms of speed and noise robustness. We show that the proposed problem can be solved in strongly local running time for $pge 2$ and conduct empirical evaluations on both synthetic and real-world graphs to illustrate our approach compares favorably with existing methods.



قيم البحث

اقرأ أيضاً

Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
Local graph clustering methods aim to find small clusters in very large graphs. These methods take as input a graph and a seed node, and they return as output a good cluster in a running time that depends on the size of the output cluster but that is independent of the size of the input graph. In this paper, we adopt a statistical perspective on local graph clustering, and we analyze the performance of the l1-regularized PageRank method~(Fountoulakis et. al.) for the recovery of a single target cluster, given a seed node inside the cluster. Assuming the target cluster has been generated by a random model, we present two results. In the first, we show that the optimal support of l1-regularized PageRank recovers the full target cluster, with bounded false positives. In the second, we show that if the seed node is connected solely to the target cluster then the optimal support of l1-regularized PageRank recovers exactly the target cluster. We also show empirically that l1-regularized PageRank has a state-of-the-art performance on many real graphs, demonstrating the superiority of the method. From a computational perspective, we show that the solution path of l1-regularized PageRank is monotonic. This allows for the application of the forward stagewise algorithm, which approximates the solution path in running time that does not depend on the size of the whole graph. Finally, we show that l1-regularized PageRank and approximate personalized PageRank (APPR), another very popular method for local graph clustering, are equivalent in the sense that we can lower and upper bound the output of one with the output of the other. Based on this relation, we establish for APPR similar results to those we establish for l1-regularized PageRank.
With a view on graph clustering, we present a definition of vertex-to-vertex distance which is based on shared connectivity. We argue that vertices sharing more connections are closer to each other than vertices sharing fewer connections. Our thesis is centered on the widely accepted notion that strong clusters are formed by high levels of induced subgraph density, where subgraphs represent clusters. We argue these clusters are formed by grouping vertices deemed to be similar in their connectivity. At the cluster level (induced subgraph level), our thesis translates into low mean intra-cluster distances. Our definition differs from the usual shortest-path geodesic distance. In this article, we compare three distance measures from the literature. Our benchmark is the accuracy of each measures reflection of intra-cluster density, when aggregated (averaged) at the cluster level. We conduct our tests on synthetic graphs generated using the planted partition model, where clusters and intra-cluster density are known in advance. We examine correlations between mean intra-cluster distances and intra-cluster densities. Our numerical experiments show that Jaccard and Otsuka-Ochiai offer very accurate measures of density, when averaged over vertex pairs within clusters.
84 - Li Chen , Richard Peng , 2021
Diffusion is a fundamental graph procedure and has been a basic building block in a wide range of theoretical and empirical applications such as graph partitioning and semi-supervised learning on graphs. In this paper, we study computationally effici ent diffusion primitives beyond random walk. We design an $widetilde{O}(m)$-time randomized algorithm for the $ell_2$-norm flow diffusion problem, a recently proposed diffusion model based on network flow with demonstrated graph clustering related applications both in theory and in practice. Examples include finding locally-biased low conductance cuts. Using a known connection between the optimal dual solution of the flow diffusion problem and the local cut structure, our algorithm gives an alternative approach for finding such cuts in nearly linear time. From a technical point of view, our algorithm contributes a novel way of dealing with inequality constraints in graph optimization problems. It adapts the high-level algorithmic framework of nearly linear time Laplacian system solvers, but requires several new tools: vertex elimination under constraints, a new family of graph ultra-sparsifiers, and accelerated proximal gradient methods with inexact proximal mapping computation.
Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recent ly, some graph similarity computation models based on neural networks have been proposed, which are either based on graph-level interaction or node-level comparison. However, when the number of nodes in the graph increases, it will inevitably bring about reduced representation ability or high computation cost. Motivated by this observation, we propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue. Specifically, each of the input graphs is partitioned into a set of subgraphs to extract the local structural features directly. Next, a novel graph neural network with an attention mechanism is designed to map each subgraph into an embedding vector. Some of these subgraph pairs are automatically selected for node-level comparison to supplement the subgraph-level embedding with fine-grained information. Finally, coarse-grained interaction information among subgraphs and fine-grained comparison information among nodes in different subgraphs are integrated to predict the final similarity score. Experimental results on graph datasets with different graph sizes demonstrate that PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا