Augmentations, annuli, and Alexander polynomials


الملخص بالإنكليزية

The augmentation variety of a knot is the locus, in the 3-dimensional coefficient space of the knot contact homology dg-algebra, where the algebra admits a unital chain map to the complex numbers. We explain how to express the Alexander polynomial of a knot in terms of the augmentation variety: it is the exponential of the integral of a ratio of two partial derivatives. The expression is derived from a description of the Alexander polynomial as a count of Floer strips and holomorphic annuli, in the cotangent bundle of Euclidean 3-space, stretching between a Lagrangian with the topology of the knot complement and the zero-section, and from a description of the boundary of the moduli space of such annuli with one positive puncture.

تحميل البحث