ﻻ يوجد ملخص باللغة العربية
PyRoss is an open-source Python library that offers an integrated platform for inference, prediction and optimisation of NPIs in age- and contact-structured epidemiological compartment models. This report outlines the rationale and functionality of the PyRoss library, with various illustrations and examples focusing on well-mixed, age-structured populations. The PyRoss library supports arbitrary structured models formulated stochastically (as master equations) or deterministically (as ODEs) and allows mid-run transitioning from one to the other. By supporting additional compartmental subdivision ad libitum, PyRoss can emulate time-since-infection models and allows medical stages such as hospitalization or quarantine to be modelled and forecast. The PyRoss library enables fitting to epidemiological data, as available, using Bayesian parameter inference, so that competing models can be weighed by their evidence. PyRoss allows fully Bayesian forecasts of the impact of idealized NPIs by convolving uncertainties arising from epidemiological data, model choice, parameters, and intrinsic stochasticity. Algorithms to optimize time-dependent NPI scenarios against user-defined cost functions are included. PyRosss current age-structured compartment framework for well-mixed populations will in future reports be extended to include compartments structured by location, occupation, use of travel networks and other attributes relevant to assessing disease spread and the impact of NPIs. We argue that such compartment models, by allowing social data of arbitrary granularity to be combined with Bayesian parameter estimation for poorly-known disease variables, could enable more powerful and robust prediction than other approaches to detailed epidemic modelling. We invite others to use the PyRoss library for research to address todays COVID-19 crisis, and to plan for future pandemics.
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable ti
We develop a novel hybrid epidemiological model and a specific methodology for its calibration to distinguish and assess the impact of mobility restrictions (given by Apples mobility trends data) from other complementary non-pharmaceutical interventi
When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidem
We highlight the usefulness of city-scale agent-based simulators in studying various non-pharmaceutical interventions to manage an evolving pandemic. We ground our studies in the context of the COVID-19 pandemic and demonstrate the power of the simul
Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the spread of COVID-19. Design of efficient NPIs requires identification of the structure of the disease transmission network. We here identify the key parameters